Скорость точки при сложном движении



Возьмем неподвижную координатную систему  и движущуюся по отношению к ней известным образом подвижную систему  (см. рис. 7.1). Скорость точки М по отношению к системе  (абсолютная скорость) будем обозначать  , скорость по отношению к системе  (относительная скорость) - , скорость той точки подвижной системы, с которой в рассматриваемый момент времени совпадает точка М (переносная скорость) - .

Продифференцируем равенство (7.1) по времени:

 .                                         (7.8)

С учетом (7.7) и введенных обозначений, имеем

 ,                                           (7.9)

где  .

Первые два слагаемых в формуле (7.9) являются скоростью точки подвижной координатной системы, совпадающей с точкой М в данный момент времени, т.е. являются ее переносной скоростью  . В таком случае абсолютная скорость точки равна сумме ее переносной и относительной скоростей.

Окончательный вид формулы (7.9) будет

 .                                                     (7.10)

 

Ускорение точки при сложном движении

Для того, чтобы получить соотношение, связывающее ускорения точки в различных системах отсчета, продифференцируем выражение (7.9) по времени:

.          (7.11)

Абсолютные производные радиуса-вектора  и вектора относительной скорости  с учетом формул (7.11) запишем в виде

 ;

 .

Подставив полученные выражения в (7.11) и сгруппировав их, получим

.      (7.12)

Сумма первых трех слагаемых в (7.12) есть ускорение той точки подвижной координатной системы, которая в данный момент времени совпадает с точкой М, т.е. переносное ускорение .

Пятое слагаемое носит название поворотного ускорения или ускорения Кориолиса; ниже оно обозначается . После соответствующих преобразований уравнение (8.12) примет вид

 .                                               (7.13)

Формула (7.13) выражает теорему Кориолиса: абсолютное ускорение точки равно сумме переносного, относительного ускорений и кориолисова, равного

 .                                                        (7.14)

Модуль ускорения Кориолиса , а направление определяется по правилу векторного произведения.

Ускорение Кориолиса равно нулю, если:

-  (переносное движение поступательное либо равенство справедливо в некоторые моменты времени) ,

- ( равенство справедливо в некоторые моменты времени),

-   (векторы, входящие в (7.14) параллельны).

Заметим, что в формулах (5.10) для вычисления ускорения точки при плоскопараллельном движении тела имеет место первый из оговоренных случаев.

После формулы (7.10) наличие последнего слагаемого в формуле (7.13) может вызвать недоумение. Ниже на простом примере показано, что в общем случае  .

Рассмотрим круглую платформу радиуса R, вращающуюся вокруг своего центра О с постоянной угловой скоростью  (рис.7.2). По краю платформы пустим точку М так, чтобы она все время находилась напротив маяка А, установленного на неподвижном основании. Очевидно, что в неподвижной системе отсчета точка М покоится, т.е. ее абсолютные скорость и ускорение равны нулю.

  

 

Принимая движение точки М по платформе за относительное, а движение совпадающей с ней точки – за переносное, имеем

 ;  ; .

Ускорения точки М в указанных движениях будут равны своим нормальным составляющим. Последние направлены от точки М к центру платформы и равны  . Их сумма не равна нулю, что противоречит здравому смыслу (неподвижность точки М).

Появление ускорения Кориолиса объясняется взаимовлиянием переносного и относительного движений, которое отсутствует при независимом рассмотрении картин составляющих движений.

Задачи на сложное движение точки подразделяются на два типа: в первом по известным переносному и относительному движениям определяют абсолютное, во втором известное абсолютное движение раскладывают на интересующие составляющие.  

ПРИМЕР 7.1 (задача 23.31 из [2]). Шайба М движется по горизонтальному стержню ОА так, что . В то же время стержень вращается вокруг вертикальной оси, проходящей через точку О, по закону . Определить радиальную и трансверсальную составляющие абсолютной скорости и ускорения шайбы в момент времени .

РЕШЕНИЕ. Примем за относительное движение шайбы ее движение вдоль стержня ОА по закону  ; картина этого движения (КОД) и его кинематические характеристики, вычисленные для момента времени , изображены на рис.7.3.  

 

 

; ; ;

Переносным движением шайбы М будет движение точки стержня, находящейся в рассматриваемый момент времени под шайбой. Для расчета ее скорости и ускорения сначала необходимо рассчитать угловую скорость и угловое ускорение стержня ОА:

; ;

; ; .

Картина переносного движения (КПД) и вычисленные для него кинематические характеристики изображены на рис.7.4.

 

 

Ускорение Кориолиса равно , его направление см. на рис.7.3. 

Теперь вычислим радиальные (проекции на ось Оx подвижной координатной системы) составляющие абсолютной скорости и абсолютного ускорения:

 ; .

Трансверсальные (проекции на ось Oy подвижной координатной системы) составляющие абсолютной скорости и абсолютного ускорения будут

; .

 Рассмотренная задача позволяет лучше понять формулы для расчета проекций скорости и ускорения точки на оси полярной координатной системы, полученные в параграфе 1.2.б формальным дифференцированием.

ПРИМЕР 7.2 (задача 22.3 из [2]). Корабль, проходящий точку А, движется с постоянной по модулю и направлению скоростью . Под каким углом  к прямой АВ надо начать двигаться катеру из точки В, чтобы встретиться с кораблем, если скорость катера постоянна по модулю и направлению и равна  ? Линия АВ составляет угол  с перпендикуляром к курсу корабля.

РЕШЕНИЕ. На рис.7.5 схематично изображена акватория, где движутся точки А (корабль) и В (катер). Точкой С обозначено место их предполагаемой встречи. 

 

 

 Представим прямолинейное движение катера (по прямой BС) как сложное, состоящее из переносного движения вместе с кораблем (поступательное движение по прямой АС) и относительного – по отношению к кораблю (в момент старта катера - движение по прямой АВ). Тогда

.

В этом треугольнике известны модули скоростей корабля  и катера , а так же угол  между скоростью корабля и линией АВ. Теорема синусов позволяет записать соотношение

 .

Тогда  .

 


Дата добавления: 2019-03-09; просмотров: 369; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!