ДЕФОРМАЦИЯ КРУЧЕНИЯ ПРЯМЫХ ПРИЗМАТИЧЕСКИХ БРУСЬЕВ



 

Определение напряжений и расчеты на прочность при деформации кручения брусьев круглого сечения

Кручением называется такой вид деформации стержня, при котором в его поперечных сечениях возникают только крутящие моменты, другие внутренние силовые факторы – продольная сила, изгибающие моменты и поперечные силы – равны нулю.

Теория кручения брусьев, имеющих круглое сплошное или кольцевое поперечное сечение, основана на следующих положениях:

1. Поперечные сечения бруса, плоские и нормальные к его оси до деформации, остаются плоскими и нормальными к ней и после деформации (гипотеза плоских сечений), они лишь поворачиваются на некоторые углы вокруг этой оси.

2. Радиусы поперечных сечений не искривляются и сохраняют свою длину.

3. Расстояния (вдоль оси бруса) между поперечными сечениями не изменяются.

В поперечном сечении бруса возникают только касательные напряжения от крутящего момента, определяемые по формуле (6.1). Их направление в каждой точке перпендикулярно радиусу, соединяющему эту точку с центром сечения (рис. 6.1). В центре (при ρ = 0) касательные напряжения равны нулю; в точках же, расположенных в непосредственной близости от внешней поверхности бруса, они наибольшие.

                       (6.1)

где  – крутящий момент в рассматриваемом сечении;  – полярный момент инерции круглого поперечного сечения; rК – расстояние от центра тяжести сечения до рассматриваемой точки К (рис. 6.1).

Рис. 6.1

 

Эпюры , построенные по формуле (6.1) для круглого сплошного и кольцевого сечений, представлены на рис. 6.1а, б.

Наибольшие касательные напряжения в поперечных сечениях определяются по формуле:

                         (6.2)

Введем следующее обозначение:

                               (6.3)

где – называется полярным моментом сопротивления поперечного сечения (см3, м3);  – расстояние от центра тяжести до наиболее удаленной точки сечения, оно равняется радиусу круга  

Условие прочности при кручении запишется:

                (6.4)

где RS – расчетное сопротивление материала при сдвиге.

Используя условие прочности (6.4), можно решать следующие задачи на кручение:

1. Проверочная задача, т.е. проверка прочности. Подставляя в формулу (6.4) величины из эпюры крутящих моментов и Wr, определенную по формуле (6.3), проверяем, выполняется ли условие прочности.

2. Проектная задача, т.е. подбор сечения. В этом случае из условия прочности (6.4), предполагая, что , определяется значение требуемого полярного момента сопротивления:

                              (6.5)

Затем значение  приравнивается выражению    т.е.

Из этого равенства определяется неизвестный диаметр стержня.

Ниже приведены формулы для определения полярных моментов сопротивления для стержней круглого поперечного сечений:

а) сплошное круглое сечение (рис. 6.2а):

 

 

Рис. 6.2

 

                                   (6.6)

                (6.7)

здесь

б) кольцевое сечение (рис. 6.2б):

                   (6.8)

         (6.9)

Здесь

3. Определение допускаемого значения крутящего момента для стержня заданного диаметра и из заданного материала.

Из условия прочности (6.4), которое берем со знаком равенства, т.е. , определяем значение допускаемого крутящего момента:

                      (6.10)


Дата добавления: 2019-02-26; просмотров: 246; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!