Б) Расчет самозапуска электродвигателей



Ниже рассмотрен расчет самозапуска остановленных элект­родвигателей при питании их от шин источника «бесконечной мощности» через трансформатор или реактор.

Расчет самозапуска от генератора, мощность которого со­измерима с мощностью самозапускающихся электродвигателей, более сложен.

Целью расчета является определение суммарного тока двига­телей и остаточного напряжения на их зажимах при самозапуске.

Как было указано выше, ток в момент пуска или самозапуска отдельного электродвигателя равен току трехполюсного к. з. за сопротивлением останов­ленного двигателя.

При самозапуске группы электродвигателей (рис. 18-19) их результи­рующее сопротивление zР.Д находится путем параллельного сложения сопро­тивлений электродвигателей, участвующих в самозапуске:

 


 

 



 

ЗАЩИТА СИНХРОННЫХ ЭЛЕКТРОДВИГАТЕЛЕЙ

А) Некоторые особенности синхронных электродвигателей

При рассмотрении защиты синхронных электродвигателей необходимо учитывать их особенности. Отметим наиболее важные из них:

1. Пуск большинства синхронных электродвигателей производится при отсутствии возбуждения прямым включением в сеть. Для этой цели на роторе синхронного электродвигателя предусматривается дополнительная короткозамкнутая обмотка,  выполняющая во время пуска ту же роль, что и в короткозамкнутом асинхронном электродвигателе. Когда скольжение двига­теля приближается к нулю, включается возбуждение и электро­двигатель втягивается в синхронизм под влиянием появляюще­гося при этом синхронного момента.

Во время пуска синхронный электродвигатель потребляет из сети повышенный ток, который по мере уменьшения сколь­жения затухает, так же как и у асинхронного электродвигателя. Для уменьшения понижения напряжения и величины пуско­вых токов мощные синхронные электродвигатели пускаются через реактор, который затем шунтируется. Защиты синхронных электродвигателей, как и защиты асинхронных электродвига­телей, должны быть отстроены от токов, возникающих при их пуске или самозапуске, имеющих место при восстановлении напряжения в сети.

2. Момент синхронного электродвигателя зависит от напряжения сети UД, э. д. с. электродвигателя Еd и угла сдвига δ между Uди Е d . Без учета потерь в статоре и роторе

где х d и х q — продольное и поперечное реактивные сопротивле­ния двигателя.

При постоянных значениях Uди Е d каждой нагрузке электро­двигателя соответствует определенное значение угла δ.

В случае понижения напряжения в сети, как следует из выражения (18-14), момент Мд уменьшается. Если при этом он окажется меньше момента сопротивления Мс механизма, то устойчивая работа синхронного электродвигателя нарушается, возникают качания и электродвигатель выходит из синхронизма. Нарушение устойчивости возможно также при перегрузке электродвигателя или снижении возбуждения.

Эффективным средством повышения устойчивости электродви­гателя является форсировка возбуждения, увеличивающая Е d . Опыт показывает, что при глубоких понижениях напряжения (до нуля) синхронные электродвигатели, работающие с номи­нальной нагрузкой, выходят из синхронизма, если перерыв питания превосходит 0,5 с.

При нарушении синхронизма скорость вращения электро­двигателя уменьшается и ои переходит в асинхронный режим. При этом в пусковой обмотке и цепи ротора появляются токи, создающие дополнительный асинхронный момент, под влия­нием которого синхронный электродвигатель может остаться в работе с некоторым скольжением. На асинхронный момент электродвигателя накладывается момент, обусловленный током возбуждения в роторе, имеющий переменный знак. Поэтому результирующий момент электродвигателя имеет переменную величину, что вызывает колебания скорости вращения ротора и тока статора двигателя.

Токи, появляющиеся в статоре, роторе и пусковой обмотке электродвигателя при асинхронном режиме, вызывают повы­шенный нагрев их, поэтому длительная работа синхронных электродвигателей в асинхронном режиме с нагрузкой больше 0,4—0,5 номинальной недопустима.

В связи с этим появляется необходимость в специальной защите от асинхронного режима. Защита от асинх­ронного режима должна или осуществить ресинхронизацию электродвигателя, или отключить его. Ресинхронизация со­стоит в том, что с электродвигателя снимается возбуждение {при этом его асинхронный момент повышается и скольжение уменьшается), через некоторое время включается возбуждение идвигатель вновь втягивается в синхронизм. Признаком нару­шения синхронизма электродвигателя является появление ко­лебаний тока в статоре и переменного тока в роторе.

3. Исследования и опыт эксплуатации показывают, что после отключения к. з. или включения резервного источника питания многие синхронные электродвигатели могут самоза­пускаться, т. е. вновь (сами) втягиваться в синхронизм.

Самозапуск синхронных электродвигателей возможен, если после восстановления напряжения под влиянием возросшего асинхронного момента (пропорционально скольжение эле-

ктродвигателя настолько уменьшится, что он сможет снова втянуться в синхронизм.

Возможность самозапуска зависит от параметров электро­двигателя, его нагрузки и уровня напряжения.

Ввиду большого значения самозапуска синхронных электро­двигателей их защиты должны надежно отстраиваться от токов, возникающих в режиме самозапуска.


Дата добавления: 2019-02-22; просмотров: 1142; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!