Регуляция экспрессии генов у эукариот



 

Система регуляции экспрессии генов у эукариот связана с особенностями функционирования эукариотического генома. Хотя и у прокариот, и у эукариот функционируют системы регуляторных белков, наличие ядра и нуклеосомная организация хроматина эукариот дают намного больше возможностей для регуляции. Ядро явилось важнейшим эволюционным приобретением эукариот. Благодаря ядерной мембране, разделяются зоны транскрипции и трансляции, что позволяет осуществлять сложную и многообразную регуляцию экспрессии генов. Такая регуляция происходит на всех этапах.

Регуляция на уровне транскрипции. Основным уровнем регуляции экспрессии у эукариот является регуляция на уровне транскрипции. Варианты такой регуляции весьма разнообразны.

Наиболее универсальным методом регуляции транскрипции служит конденсация‑деконденсация хроматина. Хорошо известно, что при активации генетического материала он деконденсируется. С другой стороны, далеко не весь эухроматин транскрибируется. Поэтому имеются и другие пути контроля транскрипции.

Для эукариот характерна дифференциальная экспрессия генов в разных клетках организма, поэтому многоклеточные организмы имеют разнообразные дифференцированные клетки. Хотя во всех клетках содержатся одинаковые гены, экспрессируются они не одинаково. Основное направление регуляции клеточной дифференцировки осуществляется при помощи тканеспецифических транскрипционных факторов. Они представляют собой белки регуляторных генов, контролирующие дифференциальную активность других генов.

Иным направлением является использование альтернативных промоторов. В разных типах клеток с одного гена могут быть образованы разные белки. Так, ген белка дистрофина содержит 7 промоторов, которые считывают информацию, начиная с разных экзонов.

Большое значение в регуляции экспрессии генов у эукариот придается фактору метилирования ДНК внутри регуляторных областей. Метилированию подвергается цитозин в составе ЦГ‑динуклеотида, что обычно приводит к инактивации гена. Деметилирование ДНК восстанавливает активность. Этот важный процесс регулируют ферменты метилтрансферазы .

Частным случаем регуляции на уровне транскрипции является гормональная регуляция, при которой гены «включаются» в ответ на внешний сигнал. Сигнал запускает экспрессию только тех генов, которые имеют специфические последовательности ДНК в своих регуляторных областях.

Весьма загадочным способом регуляции является геномный импринтинг – дифференциальное проявление отцовских и материнских генов в организме. Геномыбудто бы «запоминают» свое происхождение. Механизм этого явления не установлен.

С данным явлением схожа инактивация Х‑хромосомы в соматических клетках женского организма млекопитающих. Правда, одна из двух Х‑хромосом в клетках плода инактивируется случайным образом, поэтому в разных клетках женского организма экспрессируются как отцовские, так и материнские Х‑хромосомы.

На процессы «включения» и «выключения» генов, их конденсации и деконденсации ощутимое влияние оказывают различные хромосомные перестройки, МГЭ, изменяющие эффект положения гена.

Для эукариот не характерна регуляция по типу оперона. Большинство м‑РНК эукариот – моноцистронные. Более того, гены, контролирующие один метаболический путь, у эукариот часто разбросаны по всему геному. Но в этом правиле есть исключение. Гены р‑РНК и митохондрий транскрибируются на единую транскрипционную единицу, которая разрезается после процессинга. Считается, что такой способ позволяет унифицировать регуляцию схожих генов.

Регуляция на уровне процессинга. У эукариот транскрипция гена еще не означает его проявления в фенотипе. Молекулы РНК, синтезированные в ходе транскрипции, у эукариот подвергаются существенным модификациям. Совокупность таких преобразований и составляет сущность процессинга.

На уровне процессинга в первую очередь необходимо отметить механизм альтернативного сплайсинга, позволяющий изменять порядок сшивки экзонов. Таким образом, на основе одной и той же нуклеотидной последовательности одного гена формируются разные белки, состоящие из разных сочетаний одних и тех же аминокислотных блоков.

Феномен альтернативного сплайсинга изменил наши представления о природе гена. Его распространенность оказалась значительно выше, а роль в эволюции – важнее, чем предполагалось первоначально. Альтернативный сплайсинг характерен для более чем трети генов человека. Так, на гене белка тропонина, содержащего 18 экзонов, за счет альтернативного сплайсинга может образовываться 64 различных белковых продукта. В среднем один ген человека кодирует около трех белков (Тарантул В. З., 2003).

Другим интересным способом регуляции на уровне процессинга является тканеспецифическое редактирование РНК. Оно обнаружено у микроорганизмов, грибов, млекопитающих и проявляется заменой отдельных нуклеотидов в молекуле РНК при помощи специального ферментного комплекса. Если в случае замены вместо смыслового кодона образуется стоп‑кодон, то в новой полипептидной цепи будут отсутствовать все аминокислоты, идущие после него. Получается белок с совершенно новыми свойствами.

В ооцитах некоторых животных происходит накопление и‑РНК, у которых не закончен процессинг. Такие РНК не транслируются. Окончание процессинга и последующая экспрессия наступают только после оплодотворения.

Примерно половина гя‑РНК полностью распадается в ядре, не выходя за его пределы. Возможно распаду подвержены такие транскрипты, которые не способны превратиться в зрелую и‑РНК.

Регуляция на уровне трансляции. Механизмы регуляции экспрессии на уровне трансляции изучены недостаточно полно. Избирательная трансляция м‑РНК осуществляется отбором определенных м‑РНК путем блокировки доступа к рибосомам.

В случае избирательной стабилизации определенных типов м‑РНК в цитоплазме, они не подвергаются распаду после трансляции. Наглядным примером дифференциальной стабильности м‑РНК может служить синтез белков глобинов на стабильных м‑РНК безъядерных ретикулоцитов млекопитающих. Мутации, блокирующие полиаденилирование, наоборот, приводят к образованию очень нестабильных транскриптов. Обнаружены и другие механизмы, регулирующие стабильность м‑РНК.

Регуляция на уровне посттрансляционной модификации белка. Посттрансляционная модификация полипептида и превращение его в функционально активную молекулу белка завершает процесс реализации генетической информации. Она представляет собой различные модификации определенных аминокислот (фосфорилирование, ацетилирование), удаление некоторых из них, и на этой основе формирование вторичной, третичной, четвертичной структуры белка. На посттрансляционном уровне также возможна регуляция экспрессии. Широко распространен механизм регуляции активности ферментов, основанный на присоединении молекул‑эффекторов, в роли которых часто выступают конечные продукты биосинтеза.

В последние годы в геномах разных животных были обнаружены многочисленные РНК, выполняющие регуляторные функции. Они получили название риборегуляторов . Особое значение имеют короткие двунитиевые микро‑РНК. Их способность ослаблять работу отдельных генов получила название РНК‑интерференции.

Проблема регуляции экспрессии генов приводит к вопросу о координации этой регуляции: каким образом в каждой клетке происходит активация именно необходимой комбинации генов, определяющих ее фенотип? Для млекопитающих (в том числе и для человека) установлено наличие большого числа факторов регуляции надклеточного уровня, включая факторы нервной и эндокринной систем.

 

 

Глава 7. Генная инженерия

 

Законам природы люди повинуются, даже когда они борются против них.

И. Гете (1749–1832), немецкий мыслитель

 

Генная инженерия – это совокупность методов получения генов и переноса генетической информации из одних организмов в другие. В самом общем виде генно‑инженерный процесс представляет собой различные операции над рекомбинантными ДНК , т. е. молекулами, объединяющими ДНК разных видов (Уотсон Дж. [и др.], 1986). Несмотря на разнообразие используемых подходов, в этом процессе мы можем выделить определенную последовательность этапов.

 

Выделение генов

 

Возможно использование нескольких путей выделения генов. Каждый из них имеет свои достоинства и недостатки.

Химический синтез генов, т. е. синтез нуклеотидов с заданной последовательностью, соответствующей одному гену, впервые был осуществлен в лаборатории Г. Кораны в 1969 г. (Agarwal К. [et al.], 1970). Это был ген аланиновой т‑РНК дрожжей размером в 77 п. н. В то время это было выдающееся достижение науки. Еще более значительным событием стал искусственный синтез гена тирозиновой т‑РНК , проведенный тем же исследователем в 1976 г. Этот ген включал области промотора и терминатора, а главное, он был биологически активен, т. е. работал при введении в клетку.

Уже в 1980‑е гг. были успешно синтезированы функционально активные гены инсулина, соматостатина, интерферона . Прогресс в этой области позволил разработать специальные автоматы для синтеза ДНК определенной последовательности.

Получение отдельных генов из молекулы ДНК из природного генетического материала впервые осуществил Дж. Беквит в 1969 г. (Beckwith J., Zipser D., 1970), выделив гены лактозного оперона E. coli.

Главную роль в этом методе играют ферменты рестрикции (разрезания ДНК) – рестриктазы . Такие ферменты синтезируются практически всеми бактериями. Они относятся к группе ферментов‑эндонуклеаз , которые делают разрезы в молекуле ДНК. Разные рестриктазы всегда разрезают ДНК в определенных местах – сайтах рестрикции, которые они способны узнавать. Собственная ДНК организма, продуцирующего рестриктазу, обычно модифицирована по участку узнавания, чтобы предотвратить саморасщепление. Модификация осуществляется посредством включения в ДНК бактерии модифицированных азотистых оснований особой ферментативной системой модификации. Ферменты рестрикции и модификации представляют собой единую систему. Эта система является своеобразным барьером, предохраняющим клетку от проникновения чужеродного генетического материала и включения его в собственный геном. Структура многих сайтов рестрикции‑модификации в настоящее время расшифрована.

Ферменты бактериальной клетки могут модифицировать ДНК внедрившегося фага еще до того, как его атакуют рестриктазы. В этом случае фаговая инфекция приведет к лизису клетки, а все потомство такого фага будет содержать также модифицированную ДНК. Оно будет способно заражать другие бактерии с такой же системой репарации.

К 1977 г. А. Максамом, У. Гилбертом и Ф. Сэнджером (Gilbert W., 1981; Sanger F., 1981) были разработаны специальные методы определения нуклеотидных последовательностей ДНК, которые получили название секвенирование (от англ. sequence – последовательность). Эти методы сыграли судьбоносную роль в становлении геномики и генной инженерии. Методы секвенирования основаны на создании набора одноцепочечных фрагментов ДНК, оканчивающихся определенным нуклеотидом, для чего используются специфические рестриктазы. Разработаны разные методические подходы секвенирования и способы выделения набора фрагментов. В настоящее время высокий уровень технического оснащения сделал секвенирование достаточно рутинной лабораторной работой.

Синтез генов путем обратной транскрипции первоначально представлялся наиболее перспективным. Если известна хотя бы часть первичной структуры нужного белка, то можно синтезировать коллинеарную часть соответствующего гена. Такие участки получили название ДНК‑зондов. Их применяют для поиска м‑РНК, имеющей комплементарный им участок. Выделенную с помощью зонда м‑РНК можно использовать для синтеза комплементарной ДНК (к‑ДНК) путем обратной транскрипции. После синтеза одной цепи с помощью ДНК‑полимеразы можно синтезировать вторую цепь.

Большим недостатком этого метода является отсутствие регуляторных элементов в синтезированных генах, необходимых для экспрессии. К тому же часто к‑ДНК является упрощенной копией гена, поскольку содержит только его кодирующую часть, т. е. экзоны (без интронов).

 

Создание рекомбинантной ДНК

 

Для переноса необходимого генетического материала используются особые структуры, способные переносить чужеродную ДНК в клетку‑реципиент – векторы. Еще в начале развития генной инженерии векторы получили название «молекулярное такси». В качестве векторов могут использоваться два вида структур, содержащих ДНК: плазмиды и вирусы. ДНК вектора разрезают теми же рестриктазами, которые использовались для экзогенной ДНК.

Рестриктазы, обычно используемые в генной инженерии, разрезают обе цепи ДНК в симметричных точках палиндромов – коротких участков ДНК, в которых запись нуклеотидов слева направо в одной цепи аналогична записи справа налево другой цепи. Так, первая рестриктаза, которая нашла широкое применение, EcoR1, узнает последовательность GAATTC. Участок цепи ДНК она всегда разрывает между точками G и А.

 

 

Поэтому фрагменты ДНК, полученные при помощи этой рестриктазы, всегда несут на своих концах одноцепочечные участки ААТТ и ТТАА, комплементарные друг другу. Такие участки получили название «липкие концы», поскольку они позволяют любые фрагменты ДНК, полученные при помощи одной рестриктазы, соединять друг с другом. Это свойство и используется для соединения полученной ДНК и ДНК вектора.

Каждая рестриктаза узнает свою специфичную последовательность. Некоторые рестриктазы дают «липкие концы», другие – «тупые концы», воздействуя на связи, расположенные точно друг против друга. «Тупые концы» можно превратить в «липкие», присоединив искусственно синтезированные последовательности, узнаваемые определенной рестриктазой, – линкеры. Они позволяют клонировать любые фрагменты чужеродной ДНК безотносительно к специфичности сайтов рестрикции. Иногда к «тупым концам» присоединяют (при помощи фермента терминальная трансфераза ) комплементарные «хвосты» – поли (А) и поли (Т).

 


Дата добавления: 2019-02-12; просмотров: 346; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!