Правила составления таблиц истинности



Согласно определению, таблица истинности логической формулы выражает соответствие между всевозможными наборами значений переменных и значениями формулы.

Для формулы, которая содержит две переменные, таких наборов значений переменных всего четыре:

(0, 0), (0, 1), (1, 0), (1, 1).

Если формула содержит три переменные, то возможных наборов значений переменных восемь:

(0, 0, 0), (0, 0, 1), (0, 1, 0),(0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1).

Количество наборов для формулы с четырьмя переменными равно шестнадцати и т.д.

Удобной формой записи при нахождении значений формулы является таблица, содержащая кроме значений переменных и значений формулы также и значения промежуточных формул.

Примеры.

1. Составим таблицу истинности для формулы , которая содержит две переменные x и y. В первых двух столбцах таблицы запишем четыре возможных пары значений этих переменных, в последующих столбцах — значения промежуточных формул и в последнем столбце — значение формулы. В результате получим таблицу:

Переменные

Промежуточные логические формулы

Формула
0 0 1 0 0 1 1 1
0 1 1 1 1 0 1 1
1 0 0 0 1 0 0 1
1 1 0 0 1 0 0 1

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 1, то есть является тождественно истинной.

2. Таблица истинности для формулы :

Переменные

Промежуточные логические формулы

Формула
0 0 0 1 1 0 0
0 1 1 0 0 0 0
1 0 1 0 1 1 0
1 1 1 0 0 0 0

Из таблицы видно, что при всех наборах значений переменных x и y формула принимает значение 0, то есть является тождественно ложной.

3. Таблица истинности для формулы :

Переменные

Промежуточные логические формулы

Формула
0 0 0 1 1 0 1 0 0
0 0 1 1 1 0 1 1 1
0 1 0 0 0 1 1 0 1
0 1 1 0 0 1 1 1 1
1 0 0 1 1 0 0 0 0
1 0 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0 0
1 1 1 0 1 0 0 0 0

Из таблицы видно, что формула в некоторых случаях принимает значение 1, а в некоторых — 0, то есть является выполнимой.

Преобразование логических выражений

Равносильные преобразования логических формул имеют то же назначение, что и преобразования формул в обычной алгебре. Они служат для упрощения формул или приведения их к определённому виду путем использования основных законов алгебры логики.

Под упрощением формулы, не содержащей операций импликации и эквиваленции, понимают равносильное преобразование, приводящее к формуле, которая либо содержит по сравнению с исходной меньшее число операций конъюнкции и дизъюнкции и не содержит отрицаний неэлементарных формул, либо содержит меньшее число вхождений переменных.

Некоторые преобразования логических формул похожи на преобразования формул в обычной алгебре (вынесение общего множителя за скобки, использование переместительного и сочетательного законов и т.п.), тогда как другие преобразования основаны на свойствах, которыми не обладают операции обычной алгебры (использование распределительного закона для конъюнкции, законов поглощения, склеивания, де Моргана и др.).

Покажем на примерах некоторые приемы и способы, применяемые при упрощении логических формул:

1)
(законы алгебры логики применяются в следующей последовательности: правило де Моргана, сочетательный закон, правило операций переменной с её инверсией и правило операций с константами);

2)
(применяется правило де Моргана, выносится за скобки общий множитель, используется правило операций переменной с её инверсией);

3)
(повторяется второй сомножитель, что разрешено законом идемпотенции; затем комбинируются два первых и два последних сомножителя и используется закон склеивания);

4)

(вводится вспомогательный логический сомножитель ( ); затем комбинируются два крайних и два средних логических слагаемых и используется закон поглощения);

5)
(сначаладобиваемся, чтобы знак отрицания стоял только перед отдельными переменными, а не перед их комбинациями, для этого дважды применяем правило де Моргана; затем используем закон двойного отрицания);

6)
(выносятся за скобки общие множители; применяется правило операций с константами);

 

7)


(к отрицаниям неэлементарных формул применяется правило де Моргана; используются законы двойного отрицания и склеивания);

8)


(общий множитель x выносится за скобки, комбинируются слагаемые в скобках — первое с третьим и второе с четвертым, к дизъюнкции применяется правило операции переменной с её инверсией);

9)


(используются распределительный закон для дизъюнкции, правило операции переменной с ее инверсией, правило операций с константами, переместительный закон и распределительный закон для конъюнкции);

10)


(используются правило де Моргана, закон двойного отрицания и закон поглощения).

Из этих примеров видно, что при упрощении логических формул не всегда очевидно, какой из законов алгебры логики следует применить на том или ином шаге. Навыки приходят с опытом.

Приложение 1

Титульный лист

 


Дата добавления: 2019-01-14; просмотров: 221; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!