Анализ эмбриональных зависимостей



Механика развития вскрывает нам существование весьма ложной системы зависимостей частей в развивающемся организме Методами удаления и трансплантации эмбриональных зачатков устанавливается зависимость процессов детерминации (т. е. предопределения), формирования закладки и дальнейшего ее развития от других, обыкновенно соседних частей. Процессы, подготовляющие материал к образованию закладки, называют детерминационными. Эти процессы частью обусловлены распределением плазменных материалов самого яйца («детерминированное» дробление) и позднейшими возрастными изменениями, так же как и специфическими условиями обмена в силу определенной ситуации данной части, которые в конце концов определяют специфику реакции этого материала.

Все эти процессы являются в известной степени подготовительными, они обусловливают лабильную детерминацию клеточного материала известной части зародыша, который затем подвергается более прочной детерминации под влиянием соседних частей зародыша, являющихся в роли «организаторов», «индукторов» или «активаторов». Эти влияния определяют более точно время и локализацию закладки известного органа. Благодаря этим влияниям происходит, следовательно, более точная подгонка частей друг к другу. Поэтому можно говорить о регуляторном значении процессов индукции. Вместе с тем нужно отметить, что такие влияния не являются односторонними. Хотя индуктор или активатор и выделяется своей особой активностью, все же и реагирующий материал (реактор) оказывает и свое обратное влияние на индуктор. Так, например, крыша первичной кишки индуцирует в прилежащей эктодерме образование нервной пластинки, однако последняя определяет в материале крыши первичной кишки сегментацию мезодермы. Глазной бокал индуцирует в прилежащей эктодерме образование хрусталика, а в зачатке последнего — образование хрусталиковых волокон, но, с другой стороны, эктодерма и хрусталик индуцируют в прилежащей стенке глазного бокала образование ретины (Драгомиров) и т. п. Поэтому в процессах детерминации мы имеем дело не с односторонними зависимостями, а с взаимозависимостями частей, т. е. морфогенетическими корреляциями. Последние не ограничиваются, однако, лишь детерминационными процессами, которые, впрочем, и сами могут иметь и длительное значение (например, детерминация роговицы глаза).

И в течение формирования закладки, и во время дальнейшего ее развития и роста она все время зависит в своей дифференцировке не только от соседних частей, но и от многих других внутренних факторов развития, за которыми стоят, конечно, функции тех или иных частей организма. Некоторые из таких


56   Организм как целое в индивидуальном и историческом развитии

взаимозависимостей имеют также регуляторный характер, например, установленные Гаррисоном [Harrison, 1929] корреляции между ростом глазного бокала и хрусталика. Обычно эти зависимости с трудом поддаются анализу именно благодаря их большой сложности. В таких случаях всякое нарушение нормальных связей зачатка или даже сформированного в общем органа приводит к задержке или остановке его дифференцировки и роста. Практически это удается очень легко установить в большинстве опытов с эмбриональными трансплантациями. Экспериментальная индукция лучше всего удается в областях зародыша, близких к нормальным, и индуцированные органы развиваются в этом случае наиболее полно. Точно так же и трансплантат всегда лучше всего развивается в нормальном окружении или в ситуации, близкой к нормальной. В механике развития принято считать, что после осуществленной уже детерминации данная часть развивается дальше путем «самодифференцирования». Это, конечно, в общем верно — данная часть способна обычно к известной дифференцировке как в чуждом ей окружении, так и в эксплантате. Однако все же эта дифференцировка никогда не идет вполне нормально и во многих случаях довольно скоро прекращается. Даже в наиболее ярких случаях «самодифференцирования», когда развитие приобретает вполне «автономный» или «мозаичный» характер, это самодифференцирование является относительным и притом имеет лишь временное значение. Мы можем говорить лишь условно о «мозаичной» фазе развития вполне детерминированного зачатка органа, а если зачатки основных органов детерминируются приблизительно одновременно (у амфибий во время нейруляции), то можно говорить и о «мозаичной» фазе развития всего организма, так как сложная система взаимозависимостей детерминационного периода вместе с детерминацией органов сразу потеряла свое значение. Правда, теперь идут детерминационные процессы частей отдельных органов, которые обнаруживают свои взаимозависимости внутри органа, но значение всей закладки органа в целом в общем уже точно фиксировано.

По мере дифференцировки органа он вступает, однако, .в новые связи с другими и притом вовсе не обязательно соседними органами. Эти связи определяются уже функциями, характерными для сформированного организма. Морфогенетические корреляции, прервавшиеся во время «мозаичной» фазы развития, заменяются теперь иными связями, которые я назвал «эргонтическими» корреляциями. Это не значит, что между ними и морфогене-тическими взаимозависимостями имеются принципиальные различия. Однако мы подчеркиваем роль последних как специфических факторов морфогенеза, в то время как эргонтические корреляции, покоящиеся на характерной для организма функциональной взаимозависимости частей, играют лишь, между прочим, известную роль регуляторов формообразования. Отмечу особое


Глава II . Эмбриогенез     57

значение в этом смысле механических взаимозависимостей (значение мышечной деятельности для формирования скелета), химических (значение эндокринных факторов роста и дифференцировки разных органов) и нервных связей (значение периферии для развития нервных центров и, наоборот, нервных центров для развития периферических органов). Если эти эргонтические корреляции в особенности характерны для более поздних стадий развития, то это не значит, что на поздних стадиях морфогенетические корреляции полностью потеряли свое значение. И на поздних стадиях развития зародыша закладываются новые органы (например, перья), и их формирование определяется теми же факторами, о которых мы говорили вначале. С другой стороны, некоторые органы достигают очень рано высокой степени дифференцировки и вступают в эргонтические связи на самых ранних стадиях развития (сердце, кровеносная и выделительная системы). Существование сложной системы взаимозависимостей доказывается не только опытами нанесения дефектов у зародыша или опытами эмбриональной трансплантации. Сравнение эмбриогенеза различных видов, затем тератологический материал, а также данные феногенетики могут быть использованы с той же целью. Данные феногенетики имеют для нас особую ценность, так как позволяют установить значение корреляций в тех индивидуальных отклонениях, которые являются базой для эволюционного процесса. Сравнительные исследования дают также возможность установить факты разрыва, замены или установления новых корреляций и значение этих процессов для эволюции организма животных.

Из зависимостей, установленных путем феногенетического анализа, упомянем о следующих. Установленная мною зависимость между оперением ног и короткопалостью у кур определяется, по-видимому, преждевременной концентрацией мезенхимы под эктодермой (сдвиг во времени или повышенная активность эктодермы). Установленная мною зависимость между деформацией черепа и хохлом у кур определяется гидроцефалией, т. е. усиленной секрецией мозговой жидкости на стадиях, когда она нормально уже угасает (очевидно, в основе этого уклонения лежит также сдвиг во времени, именно продление секреции или, быть может, особое повышение секреторной деятельности эпендимы) . Установленная мною зависимость между формой гребня у кур и развитием носовых костей (также носовой перегородки) сопровождается более ранней и более значительной концентрацией мезенхимы под эктодермой в случае розовидного гребня (так-^е7 очевидно, сдвиг во времени или, быть может, не только более ранняя, но и более интенсивная реакция). Можно привести также

пример установленной зависимости между ранней редукцией ' Чатка хорды и недоразвитием спинного мозга и хвоста у корот-

Хвостых мышей по Чизли [Chesley, 1935]. Зависимость между


58 Организм как целое в индивидуальном и историческом развитии

циклопией и дефектами в прехордальной мезодерме по Адельмэ-ну [Adelmann, 1934]. Зависимость между изменением формы (ширины) нервной пластинки зародыша цыпленка и образованием лишних сомитов по Грюнвальду [Grunwald, 1935]. Наконец, особенно интересно недоразвитие уха у танцующих короткохвостых мышей, исследованных Бонневи [Bonnevie, 1936]. Эмбриологическое исследование показало, что слуховой пузырек и даже его части, вплоть до улитки и полукружных каналов, закладываются нормально, однако затем останавливаются в развитии и частью дегенерируют. У взрослых танцующих мышей нет эндолимфатиче-ского канала и нет полукружных каналов; улитка — рудиментарна. Это недоразвитие и дегенерация частей уха связаны, оказывается, с наследственным дефектом в развитии продолговатого мозга с его слуховым центром; благодаря этому не развивается слуховой нерв, а орган чувств, лишенный нормальной связи с центральной нервной системой, не только останавливается в развитии, но и дегенерирует. Это ясно напоминает нам картины филогенетической редукции («афанизии») органа. Все это есть результат разрыва нормальных морфогенетических (в данном случае, быть может, скорее эргонтических) связей.

Хотя все последние примеры относятся уже к области тератологии, но описанные исследования над мышами касаются генетически изученного материала, и указанные дефекты обусловлены каждый раз одним только геном (точнее — изменением одного гена).

Все приведенные нами примеры связаны именно с дефектами в развитии: короткопалость, недоразвитие крыши черепа, недоразвитие носовых костей, дефекты в хорде, в нервной системе, органах чувств. Таковы действительно почти все мутации; даже если они несут как будто нечто положительное (оперенность ног, хохол на голове, более сложный гребень), все же они связаны и с дефектами в других частях. Это вполне объясняется легкостью нарушения основных зависимостей при всяком изменении отдельных частей. Чаще всего изменения состоят в сдвигах во времени наступления известных реакций, и эти сдвиги наиболее ответственны за наблюдающиеся нарушения. Благодаря существованию многочисленных взаимозависимостей между частями развивающегося зародыша, весь процесс развития приобретает весьма сложный характер. Так как специфика действия генов зависит, по-видимому, не столько от специфичности известных продуктов, сколько от специфичности реакций дифференцированного материала, то уже изменение одного гена вызывает различный эффект в разных частях организма (плейотропное действие гена) и притом различный в разных возрастах. Отсюда возникает известная сложность проявления весьма простых изменений наследственного материала (множественное выражение плейотропии). Эта сложность возрастает, однако, во много


Глава 11. Эмбриогенез                       59

раз вследствие того, что каждое изменение каждого частного процесса, вызванное измененным геном, так или иначе затрагивает целый ряд других процессов, коррелятивно связанных с первично измененным процессом. При этом вторичные изменения могут быть гораздо более значительными, чем первое изменение, непосредственно определяемое изменением известного гена (многостепенное выражение плейотропии). Так, например, первичное изменение — концентрация мезенхимы под эктодермой иостаксиального края ноги курицы — приводит к развитию оперения; это последнее связано, однако, с недоразвитием скелета последнего пальца ноги (гораздо более существенное структурное изменение). Первичное изменение — гидроцефалия переднего мозга цыпленка — приводит вторично к недоразвитию крыши черепа (очень существенный дефект!), третично к развитию хохла на голове и, наконец, к сокращению и раздвоению гребня. Таким образом на сравнительно простых изменениях генотипа строятся весьма сложные преобразования процессов развития, а следовательно и всей организации.

Вполне будет логично, если мы из этого выведем заключение, что строение наследственного материала и вообще не отличается особенно большой сложностью и что на относительно простом генотипе, с эволюцией животного воздвигается все более сложная морфогенетическая надстройка (прибавим еще: со все более тонкой эргонтической отшлифовкой).

Естественно, что при этой связанности процессов развития все частные процессы должны быть строго согласованными. Специфика реакции зависит в основном от материала, т. е. от его наследственных свойств, от его дифференцировки и возраста. Точное место и время наступления реакции определяются соотношениями с другими частями. Течение процессов дифференцировки, возрастные изменения, скорость реакций — все это зависит в свою очередь от наследственных свойств материала. По Р. Гольдшмидту, изменения отдельных наследственных единиц (генов) сказываются, прежде всего, в изменении скоростей известных реакций и во времени возникновения морфогенетических процессов. Такие изменения расстраивают обычные соотношения частных процессов и тем самым либо изменяют их течение, либо делают их вообще невозможными. [По Н. И. Лазареву [1946], эктодерма способна образовать под влиянием глазной чапщ роговицу лишь на определенной стадии зрелости (раньше такое же влияние чаши индуцирует лишь хрусталики) ] При сложности связей всякие значительные сдвиги во времени должны привести к выпадению морфогенетической реакции. Для того чтобы контакт реагирующей ткани с индуктором дал определен-

 

Здесь и далее в квадратных скобках приводятся рукописные вставки автора, сделанные значительно позднее на полях книги издания 1942 г. Редколлегия сочла нужным внести эти дополнения.


60   Организм как ЦёЛдё ё индивидуальном и историческом развитии

ный морфогенетический эффект, необходимы известный уровень дифференцировки индуктора и известная зрелость реагирующей ткани, ее готовность к реакции. Если реагирующая ткань созревает раньше, чем индуктор достиг известной степени дифференцировки, или раньше, чем между ними установится контакт, то реагирующая ткань может ко времени контакта утерять способность к данной реакции, и тогда последней не произойдет. Точно так же не произойдет реакции и в обратном случае, если реагирующая ткань запаздывает в своем созревании и ко времени установления контакта еще не способна реагировать, а индуктор уже теряет свою способность к индукции. Все это делает нам понятным, почему мутации, суть которых сводится нередко к простым сдвигам некоторых реакций, так часто характеризуются недоразвитием известных частей организма или их полным выпадением. Большинство мутаций сопровождается дефектами в развитии организма, и очень многие делают это развитие вообще невозможным (летали).

5. Интегрирующие и движущие факторы индивидуального развития

Мы не ставим своей задачей построение какой-либо законченной теории развития. И время для этого еще не вполне настало, да и задача эта не только нелегкая, но и выходит далеко за пределы нашей основной проблемы. Однако мы уже ознакомились с основными факторами развития и имеем некоторое представление об их свойствах как движущих сил, с одной стороны, и как связующих зависимостей — с другой. Выдвигая на первый план взаимодействия частей как движущие факторы развития, мы ничуть не отрицаем существования и других факторов онтогенеза. Прежде всего, можно было бы выдвинуть особое значение возрастных изменений самого материала, определяющих его реактивную способность и, в значительной мере, качественную специфику его реакции на разных ступенях «зрелости». Несомненно и явления «самодифференцирования» можно рассматривать как одно из проявлений возрастных изменений материала. Наконец, можно было бы отметить и роль активных перемещений клеточного материала (отдельных клеток, целых их масс t пластов), взаимного притяжения и отталкивания различных тканей [см. Holtfreter, 1939], а также значение процессов дифференциального роста. Однако всем этим процессам я бы не придавал ведущего значения движущих факторов развития, создающих новые качества. Кроме этого, все названные процессы нельзя себе мыслить протекающими вполне автономно, независимо от окружения. Несомненно, что и их течение в значительной мере определяется взаимодействием различных частей (в двигатель ных реакциях клеток это, конечно, совершенно ясно). Насже в


Глава 11. Эмбриогенез                        61

данном случае интересует не общая теория индивидуального развития, а именно только проблема установления связей, определяющих развитие целостного организма. Взаимодействия частей развивающегося организма являются одновременно и факторами, определяющими направление их развития, и факторами, объединяющими их в целостные системы. Кроме того, эти взаимозависимости имеют обычно в большей или меньшей степени регуляторный характер, т. е. способствуют восстановлению нормальных соотношений и целостности всей системы при различных их нарушениях. Поэтому вопрос о движущих факторах онтогенеза имеет все же непосредственное отношение и к проблеме целостности организма в его индивидуальном развитии.

Первые процессы дифференциации плазмы яйца идут еще в яичнике при тесном взаимодействии между яйцом и материнским организмом. Это взаимодействие определяет полярную структуру яйца (через пути его снабжения питательным материалом.) Дальнейшая дифференциация плазмы идет при непрерывном взаимодействии между ядром и плазмой яйца во время развития и созревания последнего. Так устанавливается асимметричная структура плазмы у яиц со спиральным дроблением (аннелиды и моллюски) и билатерально-симметричное строение плазмы яиц нематод, асцидий и амфибий. Что ядро при этом принимает активное участие, видно из опыта скрещивания улиток Limnaea с правым и левым вращением. Направление вращения раковины определяется структурой плазмы яйца (и соответственно правым или левым дроблением), которое всегда наследуется только от матери, но в зависимости именно от материнского генотипа, т. е. расщепление происходит на одно поколение позже. С другой стороны, мы знаем и примеры обратного влияния плазмы на ядро, как показали в особенности известные эксперименты Бовери с центрифугированием яиц аскариды. Здесь перераспределение плазм и соответственно первой плоскости дробления приводит к образованию двух клеток, содержащих вегетативную плазму (вместо одной). В этом случае в обеих клетках (вместо одной) сохраняются петлеобразные хромосомы, характерные для зачаткового пути аскариды.

В связи с делениями созревания яйца происходит быстрое и легко наблюдаемое перетекание специфических плазм у асцидий (Конклин). Сходным образом осуществляется воздействие между ядром и плазмой при установлении характерного распределения плазм в яйце у амфибий. У бесхвостых в результате этого получается видимая билатеральная дцфференцировка и образование «серого полумесяца».

Таким образом, в результате взаимодействия между ядром и плазмой яйцо получает более или менее сложную организацию, в значительной мере определяющую течение дальнейших процессов его развития. Эта организация является, однако, еще в


62 Организм как целое в индивидуальном и историческом развитии

большей или меньшей степени лабильной. Яйцо оказывается целостной «эквипотенциальной» системой, находящейся еще некоторое время в состоянии подвижного равновесия. Если эта организация долго сохраняет известную лабильность, то при нарушении целостности яйца, даже на стадиях дробления, каждый из первых бластомеров, будучи обособлен от других, легко восстанавливает структуру всей системы и развивается затем как целое яйцо. Иными словами, яйцо как система имеет регуляторный характер . Если организация плазмы яйца быстро приобретает необратимый характер, то отдельные бластомеры при экспериментальном обособлении друг от друга уже не могут восстановить характерного распределения субстанций яйца, и тогда полная регуляция и нормальное развитие целого оказываются невозможными. В первом случае мы имеем типичные регуляционные яйца (иглокожие, позвоночные). Во втором случае — так называемые мозаичные яйца (нематоды, аннелиды, моллюски, асцидии). Ясно, что различия между ними имеют лишь условный характер, так как они определяются лишь скоростью фиксирования известных структур. Это в особенности ясно при сравнении «мозаичных» яиц асцидий и «регуляционных» яиц амфибий, которые имеют, в сущности, весьма сходное распределение субстанций в плазме яйца.

Мы можем отметить, что одним из основных движущих факторов онтогенеза является взаимодействие между ядром и плазмой. В результате этого взаимодействия получается целостная, но до известной степени подвижная организация яйца. Яйцо можно рассматривать как целостную систему с определенным, по меньшей мере полярным распределением веществ. Различные зоны яйца обнаруживают лишь количественные различия, особенно значительные между обоими полюсами. Из них анимальный полюс отличается большей физиологической активностью, а вегетативный — наименьшей. Можно говорить о «градиенте» физиологической активности с высшей его (доминирующей) точкой на анимальном полюсе. В яйце амфибий образуется еще и вторая точка высокой активности в области экватора, отмеченная у бесхвостых «серым полумесяцем».

Во время дробления эти количественные различия фиксируются в продуктах дробления — бластомерах и клетках. Они становятся основой для качественных различий и в их дифференцировке и в их эмбриональных функциях. Это отражается, прежде всего, на «поведении» клеток, принимающих различное участие в формообразовательных движениях зародыша. Первые движения такого рода связаны с гаструляцией, которая приводит к контакту клетки анимального и вегетативного полюса бывшей бластулы. У амфибий клетки области «серого полумесяца», образующие крышу первичной кишки, приходят в контакт с эктодермальными клетками анимального полюса. В этом контакте


Глава II . Эмбриогенез                         63

«первичного организатора» с частью эктодермы устанавливается взаимодействие, окончательно определяющее развитие хорды и мезодермы в материале крыши первичной кишки и нервной системы с органами чувств — в прилежащей эктодерме.

Мы уже отмечали, что мы имеем здесь несомненно обоюдное влияние обоих компонентов друг на друга. Оба компонента вместе имеют характер определенной целостной системы. И эта система имеет регуляторный характер. Возможен известный сдвиг как в пространстве, так и во времени. Можно переместить материал крыши первичной кишки под другое место эктодермы и все же получить характерную для этой системы формообразовательную реакцию (рис. 3). Можно соединить компоненты, взятые от зародышей различного возраста, и также получить нормальную дифференцировку. Из этого уже следует, а экспериментами это доказывается, что в такой системе возможны и значительные изменения уровня активности каждого из компонентов без нарушения нормального развития. Оба взаимодействующих компонента не были, конечно, индифферентными — они были частично (лабильно) уже детерминированы локальными свойствами своих плазм. Во взаимодействии их детерминация становится более прочной, иногда — необратимой. Вместе с тем каждый компонент приобретает значение самостоятельной, вполне ограниченной системы. Будущая нервная пластинка, сохраняя, а частично и приобретая еще более ясно выраженную региональность, т. е. обнаруживая количественные различия на разных уровнях (типа градиента), в первое время не имеет еще качественных различий. Уже детерминированная (но еще не дифференцированная) нервная пластинка оказывается опять целостной системой «эквипотенциального» характера. Она способна к регуляции. При ее разделении на части каждая часть дает начало уменьшенной, но целой нервной пластинке. Лишь постепенно, в процессе дальнейшей детерминации, первоначальные количественные различия типа градиента фиксируются в виде различных отделов центральной нервной системы (и органов чувств). Все сказанное относится в такой же мере и к «хордомезодерме», и к любым компонентам позднейших индукционных систем.

В этих системах имеются всегда признаки целостности и вместе с тем известной подвижности. Они имеют регуляторный характер, допуская возможность сдвигов в пространстве и во времени. Кроме того, возможны и некоторые количественные и даже качественные изменения одного из компонентов без нарушения формообразования (замена специфического индуктора другим, взятым от другого вида животного или даже из другого зачатка). Это еще более подчеркивает регуляторный характер редукционных систем. Во время взаимодействия оба компонента испытывают известные изменения, которые постепенно фиксируются как более или менее необратимые. В процессе этой


64   Организм как целое в индивидуальном и историческом развитии

«детерминации» данная часть всегда определяется сначала как еще лабильное целое, т. е. как «эквипотенциальная» система, которая при искусственном разделении восстанавливается как уменьшенное целое.

Взаимодействие частей в индукционных системах мы считаем важнейшим движущим фактором онтогенеза. На его основе происходит образование новых качеств в виде новых зачатков, обладающих первоначально еще лабильной, но получающих затем все более стабильную организацию. Специфика реакций зависит при этом в основном от самого реагирующего материала, и первоначальные, а также и в дальнейшем нарастающие количественные различия приводят к увеличению качественного многообразия структур внутри самой системы (явления «самодиф-ференцировки»). Каждая новая дифференцировка приводит к установлению новых соотношений и новых морфогенетических взаимозависимостей. Если же морфогенетические процессы заканчиваются, то им на смену выступают физиологические взаимозависимости с более или менее значительным морфогенетическим эффектом (эргонтические корреляции). Поэтому, несмотря на постепенную автономизацию отдельных процессов, переходящих на кажущееся «самодифференцирование», взаимозависимости частей внутри организма не разрываются, а приобретают лишь новые формы. Организм с самого начала и до конца развивается как одно целое.

Развитие организма совершается при непрерывном, правда, расчленении, но это расчленение является средством к дальнейшему усложнению связей, взаимозависимостей частей внутри целого. Эти все более сложные взаимодействия частей и являются движущей силой развития, и, следовательно, нормальное развитие организма, т. е. дальнейшее его расчленение, возможно лишь до тех пор, пока все эти части взаимодействуют, т. е. пока они связаны в одно целое. Весь организм прогрессивно развивается лишь постольку, поскольку он целостен. Дифференциация неразрывно связана с интеграцией. Они обусловливают друг друга. Дифференциация как «раздвоение единого» приводит к взаимному контакту результатов этого раздвоения, которые, ввиду установившегося взаимодействия, дают начало новой системе с новыми качествами, определяющими дальнейшую дифференциацию и новую интеграцию на высшей ступени организации. В роли интегрирующих факторов развития выступают, следовательно, взаимодействия частей, т. е. морфогенетические корреляции в широком смысле этого понятия. Они связывают развивающийся организм в одно устойчивое и вместе с тем достаточно лабильное целое, в значительной мере противодействующее различным (как внешним, так и внутренним) неблагоприятные влияниям, которые могли бы нарушить процессы нормального развития.


Глава II . Эмбриогенез                         65

Устойчивость процессов индивидуального развития объясняется сложностью связей и существованием регуляторного аппарата, простейшей формой которого и основой является подвижная организация плазмы яйца. На этой основе развиваются затем такие же подвижные эквипотенциальные системы отдельных «индифферентных» зачатков. Система корреляций регуляторного характера должна рассматриваться как часть наследственного аппарата, определяемого в своем развитии в значительной мере плазмой (конечно, в ее взаимодействии с ядром) яйца.


Дата добавления: 2019-01-14; просмотров: 261; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!