Годовое изменение параметров Земли 4 страница



Для корректного расчета изменения массы необходимо определиться с тем, на какой временной период приходится известная на сегодня величина массы равная Мз  = 5,978∙1027 г. Естественно предположить, что требуемую массу планета может иметь тогда, когда она находится в той области времени, в которой на графике 15 совпадают радиусы орбит, полученные по расчету инвариантов и по таблице эфемерид. И все известные параметры планеты Мз, Rз, Gз, g и т.д. следует отнести к одному из этих дней.

Вырежем фрагменты графика 15 в окрестностях пересечения радиусов, полученных по таблице эфемерид – ряд 1 и по инварианту (4.4) – ряд 2, и посмотрим, на какие числа приходятся даты пересечения;

На графиках 17 и 18 показаны фрагменты диаграммы годового изменения радиусов орбит исполненные по (4.3) и по таблице эфемерид. На этих фрагментах диаграммы пересекаются в двух точках: 30-го сентября 2005 г. и 6-го апреля 2006 г. Место пересечения показывает, что в эти дни расстояние

 

График17.                                  График18.

от планеты до Солнца по эфемеридам лаборатории реактивного движения и по инвариантному расчету будут близки к совпадению. И, следовательно, все числовые параметры планеты для обеих диаграмм будут примерно одинаковыми. Примем массу Земли на 6 апреля равной Мз  = 5,978∙1027 г. и определим диаграмму её изменения за год.

Массу можно определить по нескольким инвариантам.

По изменению скорости на орбите:

 Мn/vn = const1.                                        (4.14) 

По изменению расстояния до Солнца:

RnMn2 = const.                                         (4.15)

По неизменности момента количества движения µ:

RnvnMn = µ = const.                                 (4.16) 

И т.д.

Результаты всех расчетов по этим инвариантам будут тождественны.

Предположим, что масса Мn рассчитывается по инварианту (4.11); тогда равенство расстояний приходится на 6 апреля 2006 г. и величина инварианта равна:

Мn/vn = 2,0123583·1021 гсек/см.             (4.17) 

Преобразуя (4.11) относительно Мп имеем:

Мn = 2,0123583·1021·vn,

и найдя, по изменению скорости движения, количественную величину массы Земли на каждый день года (приложение 2 столбец Мз), строим диаграмму изменения массы Мn (график 19).

Диаграмма Мn аналогична диаг-рамме изменения скорости движения планеты по орбите. Она свидетель-ствует о том, что масса Земли пуль-сирует с месячной и годовой частотой, изменяясь за полугодие в пределах: минимум ~ 5,893·1027 г. на 24.06.2005 г., максимум 6,09711027 г. на 01.01.2006 г.

График 19.                 Т.е. изменение величины массы наблюдается даже в первом знаке. Разница между максимумом и минимумом массы Землисоставляет ~2,049·1026 г. Это почти в три раза больше принятой на сегодня массы Луны равной Мл = 7,35·1025 г.

Аналогично рассчитываем изменение радиусаRз планеты                 в течение года, используя различные инварианты. Например:

RзМз2 – const.                                          (4.18)

Или,

Rзn vn2 – const1, И т.д.

Для нахождения величины радиуса орбиты планеты на каждый день года используем инвариант (4.15):

RзnМзn2 = 2,279·1064.

Полученные результаты занесем в приложение 2 диаграмма Rз и построим на графике 19 диаграмму R. Диаграмма R показывает, что радиус Земли уменьшается одновременно с возрастанием ее массы. Констатируем: согласно расчетам минимальный радиус Rз ≈ 6,1497 тыс. км. Земля имела 1 января 2006 г. Максимальным радиус Земли пришелся на 10 июля 2006 г. и составил Rз ≈ 6,5848 тыс. км. Амплитуда колебания радиуса ~ 435 км, Таким образом, теоретические параметры самопульсации Земли оказываются достаточно весомыми, и не могут не влиять на режим функционирования планеты и в первуюочередь погоды на ней.

Для расчета диаграммы изменения «постоянной» тяготения Gn можно также применить несколько инвариантов.

Gnvn = const2                                               (4.19) 

Gn2∕Rn = const3 = Д,            И т.д.          (4.20)     

Для минимизации расчетов,употребим только один из них, например (4.20), причем радиусом в нем можно использовать как орбитальный радиус Rn, так и радиус Земли Rзn, естественно, что принимаются параметры по численной величине на 6 апреля 2006 г.:

Gn2∕Rзn = Д = (6,672·10-6)2∕6,378·108 = 6,97955·10-20. (4.21)

Преобразовав (4.21) относительно Gn получаем:

Gn = √ДRn.                                                (4.22)

И решив уравнение (4.22) на каждый день года, занесем полученные результаты в график 19, и получим диаграмму G изменения гравитационной «постоянной».

Таким образом, модули всех трех параметров Мn, Rзn,, и Gn оказываются синусоидально изменяемыми. Причем два из них, радиус и масса Земли изменяются в противофазе изменению гравитационной «постоянной».

Расчет силы «притяжения» можно производить по двум уравнениям:

по уравнению (а):  

Fn = GnmnMn/Rn2 = Рn,

и по уравнению (б):     

Fn = mngn.

И то, и другое уравнение предполагает «неизменность» веса тела на некоторой поверхности во времени. И в том и в другом уравнении также присутствует «неиз-менная» масса некоего пробного тела. В качестве пробного тела в данной работе используем свинцовый цилиндр весом на 6 апреля 2006 года 202,9 гр. Для получения силы притяжения Fn, например, по(б) необходимо знать изменение напряженности гравиполя График 20.                планеты gn и массы mn на каждый день года. Напряжённость гравитационногополя (ускорение свободного падения) можно определить по инварианту:

R2g = А = 2,2014∙1027 см3∕сек2.

Рассчитаем изменение напряженности g и отобразим его на графике 20:

Напряженность гравитационного поля меняется за год от 9,22·102 см3⁄сек2 до 10,55·102 см3⁄сек2 в январе, т.е. на 1,33·102 см3⁄сек2.                                                                            

Осталось определиться с силой притяжения тела к Земле F и с его массой m. Силу притяжения также можно определять по нескольким инвариантам:

  FRз=Е                         (4.23)

F2Rз5= Ж  и т.д.

Определимся, например, с количе- График 21.                        ственной величин инварианта (4.23):

FRз2G = Е = 5,4916·1012.

И, рассчитав параметр Fn на каждый день года, построим диаграмму графика 21. Диаграмма показывает, что вес свинцового цили-ндра изменяется с 187,33 грамма на 01.07.05 г. до 212,61 грамма на 01.01.06 г., т.е. на 25,28 гр.

Однако весы отображают величину практически на два порядка меньше. Это следствие одновременного уменьшения параметров всех тел под воздействием изменения гравиполя Земли (через массу эталонного тела).

Определим массу пробного тела исходя из параметров Земли на 6 апреля 2006 года:

m = Р⁄g = 0,20683 гр.,

и по инварианту (4.15):

vn⁄mn = 1,440874 = const1,

определим количественную величину mn на каждый день года с 01.07.05 до 01.07.06. Диаграмма графика 22 показывает, что изменение массы пробного тела за год аналогично изменению массы Земли (график 19.) и силы при-тяжения Землей пробного тела (график 22.).Отмечу, что на графиках12-15отображены теоретические изменения параметров Земли, кото-рые при эмпирическом рассмотрении График 22.                взаимодействия конкретных тел могут давать результаты, значительно отличающиеся от теоре-тических. Это обусловлено тем, что процесс измерения веса любого тела осуществляется опосредованно через некоторое промежуточное тело, илипружину,со свойствами, изменяющимися при изменении внешнего гравиполя.                                     

 

4.4. Орбитальные пульсации Земли

 

Эту небольшую публикацию из сборника [66] с тем же названием, я привожу без изменения как при­мер орбитальной самопульсации Земли и Луны, совер­шенно не касаясь механики их движения в свете изло­женных выше электродинамических взаимодействий и с добавлением, тезисно, некоторых короткопериодических пульсаций земных сфер.

Траектории механического орбитального движения небесных тел Солнечной системы, в частности Земли и Луны, теоретически рассчитываются не по полевым уравнениям, как это делается, например, в электродина­мике, а достаточно искусственными методами возму­щающих движений. А потому правомерен вопрос: По­чему полевые методы теории гравитации практически не находят применения при расчете орбитального дви­жения планет?

Опуская рассмотрение методов возмущения как дос­таточно известных, попробую определить причины, обусловливающие отступление от полевых методов рас­чета орбит небесных тел на примере орбитального дви­жения планеты Земля.

 Из классической механики известно, что планета Зем­ля движется по «инерции» на орбите в гравитационном поле Солнца со средней скоростью vcp = 29,76 км/с, имея в перигелии скорость vp = 30,27 км/с, а в афелии va = 29,27 км/с [57]. В 1995 г. по эфемеридам расстояние в перигелии от центра Солнца до Земли составляло Rp = 1,471·1013 см, а в афелии Ra = 1,521·1013 см, при среднем расстоянии Rcp = 1,4961013 см [108].

Воспользовавшись этими данными, определяем рас­четную напряженность гравиполя g на расстоянии, со­ответствующем этим точкам по формуле:

gn = vn 2 / Rn .                                                      (4.24)     

И получаем, что в перигелии напряженность gp = 0,62391 см/с2, в афелии ga = 0,56328 см/с2, a gcp = 0,59202 см/с2.

Зная напряженность (ускорение свободного падения) гравиполя Солнца gc = 2.738·104 см/с2, его радиус Rc = 6,96·1010 см и закон убывания напряженности — инва­риант (4.25):

R с 2 gc = 1,3263·1026 - const ,                                    (4.25)

определяем для тех же областей пространства теорети­ческую напряженность гравитационного поля, созда­ваемую Солнцем. Она равна в перигелии gp 1 = 0,61296 см/с2, в афелии ga 1 = 0,57332 см/с2 и только в начале ап­реля и в октябре в моменты пересечения с расчетной, оказывается близкой к ней. Различие расчетных и теоре­тических параметров напряженности гравитационного поля уже во втором знаке (и, в частности, у Луны тоже) становится основной причиной затруднений при ис­пользовании полевых методов в расчете орбитального движения небесных тел. На диаграмме 1 графика 23 сплошной ли­нией 1отображено ежедневное расчетное изменение на­пряженности гравиполя в 1995 г., построенное по траек­тории движения Земли. Линия 2показывает реальную напряженность гравиполя на том же расстоянии от Солнца, на

График 23

котором планета находится в соответствую­щий день. И, как явствует из диаграммы, наибольшая расчетная напряженность наблюдается в перигелии. За­тем, по мере увеличения расстояния от Солнца до Зем­ли, она, практически монотонно, убывает, сравниваясь с теоретической в начале апреля, и, продолжая убывать, достигает афелия в начале июля. В точке афелия проис­ходит перелом, и расчетная напряженность начинает возрастать, достигая средней величины в начале октября и максимума — в новом перигелии.

Фигура, образуемая этими двумя сходящимися ли­ниями, несколько напоминает полураскрытые ножницы. Угол между линиями 1 и 2 является основным препятст­вием применения полевых гравитационных уравнений. Никакого объяснения расхождению расчетной и теоре­тической напряженности мне обнаружить не удалось. И, по-видимому, современная небесная механика пренеб­регает этими ножницами, ограничиваясь при расчете траектории движения небесных тел уже упомянутым методом возмущений. К тому же классическая механика оставляет неизменными все параметры планет на про­тяжении всего их движения по орбите. А это может ока­заться одним из факторов, сдерживающих сближение теоретической и расчетной напряженностей.

Попробую, основываясь на принципах русской меха­ники, рассмотреть отдельные аспекты возможного из­менения параметров Земли при орбитальном движении.

Прежде всего, русская механика предполагает зависи­мость всех параметров движущегося тела от скорости его движения. И надо ожидать, что с возрастанием ско­рости v при движении планеты к перигелию или с ее уменьшением будет наблюдаться изменение радиуса R , гравитационной «постоянной» G , массы т, напряженно­сти гравитационного поля g и т.д. Поэтому, рассматри­вая на диаграмме 1 фактическую напряженность грави­тационного поля (линия 7) и зная, что она образуется радиусом и скоростью (4.24), необходимо определить форму связи этих внешних параметров с параметрами Земли. Например, с массой или гравитационной «посто­янной». И хотя бы предварительно определиться, будут ли они изменяться при движении планеты и каким образом.

Однако на любые изменения массы в классической механике, как уже говорилось, до сего дня наложено аб­солютное табу. Она постулируется неизменной всегда. Допускаются ее изменения только при скоростях, близ­ких к скорости света, которая, как известно, несопоставима с орбитальными скоростями, а потому при орби­тальных скоростях масса планеты меняться не может.

На изменение гравитационной «постоянной» G нало­жено табу помягче. Ее изменения допускаются. Более того, его ищут экспериментально и постоянно находят, но объяснение этому изменению в классической меха­нике еще нет.

В русской механике неизменные свойства отсутству­ют. Все свойства тел, в том числе и масса, и гравитаци­онная «постоянная» с изменением внешних условий ме­няют свою количественную величину. И потому, рассматривая медленное, почти монотонное ежедневное изменение линии 7 диаграммы 1, можно предположить, что и скорость на орбите, и расстояние от Солнца до планеты, и длина радиуса, и ее масса изменяются моно­тонно, а какая-то их совокупность остается неизменной и описывает соответствующую кривую. Задача заключа­ется в том, чтобы выделить из этой совокупности часть изменения, относящегося, например, к массе.

Классическая механика, как и русская, содержит урав-­
нение, которое включает в себя и массу т, и скорость v ,
и радиус l. Это уравнение количества движения М:

M = mvl - const .                                               (4.26)

И по законам классической механики, и по законам
русской механики (добавлю и по законам электродинамики, и квантовой механики) момент количества движе-ния, при свободном вращении или движении по орбите, всегда остается неизменным. То есть в приложении кдвижению планеты по орбите момент М по закону не может изменяться. Поскольку и в правой и в левой части
уравнения (4.26) имеются как бы неизменные величины
М и т, то его можно привести к виду:

М/т = vl - const .                                              (4.27)

И оно будет таким при инерционном движении плане­ты по окружности, но не по эллипсу. При движении по эллипсу, как явствует из диаграммы 1 графика 23, произведение vl ≠ const , а значит и М/т ≠ const . И остается предполо­жить, что в движении по орбите меняется либо момент М, либо масса т. Поскольку момент «охраняется» зако­ном, в обеих механиках, а масса алогичным постулатом и только в одной, логично будет рассмотреть, изменяется ли масса планеты и по какому закону при ее движе­нии по орбите.

Можно, конечно, предположить, что в уравнении (4.26) меняется момент, а масса остается неизменной, или масса и момент изменяются в некоторой пропорции. Но из данных предположений следует, что изменения эти могут происходить только при некоторой форме взаимодействия движущейся планеты с окружающим пространством. Что конечно правильно и соответствует русской механике, но совершенно неприемлемо для ме­ханики классической.

В качестве точки отсчета для нахождения М было взя­то 4 апреля 1995 г., время, когда расчетная и теоретиче­ская напряженности сравниваются и, следовательно, скорость v = 2,9763·106 см/с, массу т = 5,978·1027 г и расстояние l = 1,4966·1013 см можно было принять за первичные исходные величины. В результате постоян­ная величина момента количества движения Земли по орбите оказалась равной М = 2,6628·1047 г.см/с. (Еже­дневное расстояние до Солнца на 12 часов находим по эфемеридам [108], среднесуточную скорость определяем по [109]).


Дата добавления: 2018-11-24; просмотров: 47; ЗАКАЗАТЬ РАБОТУ