Обратные тригонометрические функции

105.1)

Заметим, что для натуральных n степенная функция определена на всей числовой оси.
Для произвольных вещественных n это невозможно, поэтому степенная функция с вещественным показателем определена только для положительных x .

К основным свойствам степенной функции y = x a при a > 0 относятся:

  • Область определения функции - промежуток (0; + ).
  • Область значений функции - промежуток (0; + ).
  • Для любых a график функции проходит через точку (1; 1).
  • Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 < ar2 .
  • График степенной функции при a > 0 изображен на рисунке.

К основным свойствам степенной функции y = x a при a < 0 относятся:

  • Область определения функции - промежуток (0; + ).
  • Область значений функции - промежуток (0; + ).
  • Для любых a график функции проходит через точку (1; 1).
  • Функция строго монотонно возрастает в области определения функции, то есть, если x1 < x2 то ar1 > ar2 .
  • График степенной функции при a < 0 изображен на рисунке.

105.2)мы определили значение выражения ax для всех a > 0 и всех x. Если a = 1, то ax = 1 при всех x. Следовательно, при a > 0, a ≠ 1, определена функция y = ax, отличная от постоянной. Эта функция называется показательной функцией с основанием a. К основным свойствам показательной функции y = ax при a > 1 относятся:

  1. Область определения функции − вся числовая прямая.
  2. Область значений функции − промежуток
  3. Функция строго монотонно возрастает на всей числовой прямой, то есть, если то
  4. График показательной функции с основанием a > 1 изображён на рисунке.
Рисунок 2.2.5.1. Функция y = ax при a > 1
Рисунок 2.2.5.2. Функция y = ax при 0 < a < 1

К основным свойствам показательной функции y = ax при 0 < a < 1 относятся:

  1. Область определения функции − вся числовая прямая.
  2. Область значений функции − промежуток
  3. Функция строго монотонно убывает на всей числовой прямой, то есть, если то
  4. График показательной функции с основанием 0 < a < 1 изображён на рисунке.

 

105.3)

Функция вида y = loga х(где а > 0, а ≠ 1) называется логарифмической.

1) Область определения логарифмической функции — множество всех положительных чисел.
Это следует из определения логарифма, так как выражение logax имеет смысл только при x > 0.

2) Множество значений логарифмической функции — множество R всех действительных чисел.
Это следует из того, что для любого действительного числа b есть такое положительное число x, что logax = b, т.е. уравнение logax = b имеет корень. Такой корень существует и равен x = ab, так как logaab = b.

3) Логарифмическая функция y = logax является возрастающей на промежутке x > 0, если a > 0, и убывающей, если 0 < a < 1.

4) Если a > 0, то функция y = logax принимает положительные значения при x > 1,отрицательные — при 0 < x < 1. Если 0 < a < 1, то функция y = logax принимает положительные значения при 0 < x < 1, отрицательные — при x > 1.
Это следует из того, что функция y = logax принимает значение , равное нулю, при x = 1 и является возрастающей на промежутке x > 0, если a > 1, и убывающей, если 0 > a > 1.

Ниже представлены графики логарифмических функций при a > 0 (1); 0 > a >1 (2).

Стоит отметить, что график любой логарифмической функции y = logax проходит через точку (1 ; 0)


 

106.1)

Функция синус

Область определения функции— множество Rвсех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. синус функция — ограниченная. Функция нечетная: sin(−x)=−sin x для всех х ∈ R. График функции симметричен относительно начала координат. Функция периодическая с наименьшим положительным периодом 2π: sin(x+2π·k) = sin x, где k ∈ Z для всех х ∈ R. sin x = 0 при x = π·k, k ∈ Z. sin x > 0 (положительная) для всех x ∈ (2π·k, π+2π·k), k ∈ Z. sin x < 0 (отрицательная) для всех x ∈ (π+2π·k, 2π+2π·k), k ∈ Z.
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция косинус

 
Область определения функции— множество Rвсех действительных чисел. Множество значений функции — отрезок [-1; 1], т.е. косинус функция — ограниченная. Функция четная: cos(−x)=cos x для всех х ∈ R. График функции симметричен относительно оси OY. Функция периодическая с наименьшим положительным периодом 2π: cos(x+2π·k) = cos x, где k ∈ Z для всех х ∈ R.
cos x = 0при
cos x > 0 для всех
cos x < 0для всех
Функция возрастает от −1 до 1 на промежутках:
Функция убывает от −1 до 1 на промежутках:
Наибольшее значение функции sin x = 1в точках:
Наименьшее значение функции sin x = −1в точках:

Функция тангенс

 
Область определения функции— множествовсех действительных чисел, кроме

Множество значений функции — вся числовая прямая, т.е. тангенс — функция неограниченная.

Функция нечетная: tg(−x)=−tg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π, т.е. tg(x+π·k) = tg x, kZ для всех х из области определения.

tg x = 0при
tg x > 0 для всех
tg x < 0для всех
Функция возрастает на промежутках:

Функция котангенс

 
Область определения функции— множествовсех действительных чисел, кроме чисел

Множество значений функции — вся числовая прямая, т.е. котангенс — функция неограниченная.

Функция нечетная: ctg(−x)=−ctg x для всех х из области определения.
График функции симметричен относительно оси OY.

Функция периодическая с наименьшим положительным периодом π, т.е. ctg(x+π·k)=ctg x, kZ для всех х из области определения.

ctg x = 0при
ctg x > 0 для всех
ctg x < 0для всех
Функция убываетна каждом из промежутков

 


 

106.2)

Обратные тригонометрические функции

График 2.3.4.1. График функции y = arcsin x.
График 2.3.4.2. График функции y = arccos x.

Арксинусом x называют такое число , что sin t = x. Из определения следует, что

При помощи арксинуса решение уравнения sin x = t записывается следующим образом:

или t = (–1)n arcsin x + πn,

Функция y = arcsin x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок Она обратна функции y = sin x, рассматриваемой на отрезке и поэтому монотонно возрастает. Функция y = arcsin x является нечетной.

Арккосинусом x называют такое число 0 ≤ t ≤ π, что cos t = x. Из определения следует, что

При помощи арккосинуса решение уравнения cos x = t записывается следующим образом:

t = ±arccos x + 2πn,

Функция y = arccos x определена и непрерывна на отрезке [–1; 1]. Ее областью значений является отрезок [0; π]. Она обратна функции y = cos x, рассматриваемой на отрезке [0; π], и поэтому монотонно убывает на области определения. Функция y = arccos x не является ни четной, ни нечетной.

Арктангенсом x называют такое число , что tg t = x. При помощи арктангенса решение уравнения tg x = t записывается следующим образом:

t = arctg x + πn,

Функция y = arctg x является нечетной.

График 2.3.4.3. График функции y = arctg x.
График 2.3.4.4. График функции y = arcctg x.

Арккотангенсом x называют такое число 0 ≤ t ≤ π, что ctg t = x. При помощи арккотангенса решение уравнения ctg x = t записывается следующим образом:

t = arcctg x + πn,

Функция y = arcctg x не является ни четной, ни нечетной.

Функции y = arctg x и y = arcctg x определены и непрерывны на всей числовой оси. Их областями значений являются, соответственно, интервалы и (0; π). Арктангенс монотонно возрастает, а арккотангенс монотонно убывает на всей области определения. Функциями, обратными к данным, являются соответственно tg x на и ctg x на(0;

 


Дата добавления: 2018-08-06; просмотров: 301; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!