Биологическая обработка органических отходов



Антибиотики – специфические продукты жизнедеятельности организмов или их модификации, обладающие высокой физиологической активностью по отношению к определенным группам микроорганизмов или к злокачественным опухолям, задерживая их рост или полностью подавляя их развитие. К антибиотикам относятся низкомолекулярные эффекторы изначально природного происхождения, способные подавлять рост живых клеток. Антибиотики возникли в борьбе за существование почвенных биоценозов, поэтому многие из них служат средствами нападения и защиты, т.е. представляют собой своеобразное химическое «оружие» клетки. Однако эти функции у антибиотиков не единственны. Известно, что они могут участвовать в процессах детоксикации вредных метаболитов, контролировать некоторые стороны обмена веществ и целые процессы развития, например, дифференцировку клеток, служить запасными питательными веществами. В процессе образования антибиотиков задействовано значительное число генов. Массовая расшифровка первичной структуры геномов микроорганизмов показала, что эта величина равна 1 – 2 %. Так, у Bacillus subtilis число таких генов достигает 2 %, что обеспечивает микроорганизму большие возможности для защиты и адаптации. С другой стороны, это обстоятельство затрудняет анализ путей биосинтеза антибиотиков и идентификацию отдельных мутаций, способных увеличить выход продукта.  Способность нитчатого гриба зеленой плесени Penicillium notatum вызывать гибель микроорганизмов впервые была установлена в 1928 г. английским микробиологом А. Флеммингом. Однако лечебные свойства этой плесени были описаны еще в 1871 г. русским дерматологом А. Г. Полотебновым. Открытие антибиотиков произвело переворот в лечении инфекционных заболеваний. Антибиотики применяют в ряде отраслей народного хозяйства (растениеводство, животноводство, ветеринария, пищевая промышленность и др.), где они используются более широко, чем в медицине, например, для лечения сельскохозяйственных животных, борьбы с фитопатогенными микроорганизмами, а также для увеличения биомассы животных (биомицин – производное тетрациклина). Антибиотики широко используют в качестве молекулярных инструментов при исследовании фундаментальных проблем биологии, таких, как расшифровка механизмов биосинтеза белка, нуклеиновых кислот и структуры клеточных стенок бактерий, создание моделей транспорта ионов через биологические мембраны и др. Изыскание новых форм антибиотиков обусловлено как потребностями практики, так и накоплением резистентных форм микроорганизмов по отношению ко многим антибиотикам. Устойчивость бактерий к пенициллинам и цефалоспоринам создает присутствующий в их клетках энзим лактамаза (пенициллиназа). Фермент гидролизует амидную связь β-лактамного цикла в молекуле антибиотика с образованием пенициллиновой кислоты, которая пол­ностью лишена антимикробной активности: Резистентность микроорганизмов к антибиотикам обеспечивается разнообразием фенотипов резистентности и разнообразием и стабильностью систем горизонтального генного транспорта. Поэтому главное направление получения новых антибиотиков состоит не в открытии новых соединений, а в химической трансформации природных молекул для создания полусинтетических антибиотиков, характеризующихся значительно меньшей резистентностью и токсичностью, но более широким спектром действия, большим временем жизни, химической и биологической устойчивостью. Важный подход на пути получения устойчивых аналогов антибиотиков – использование природных ингибиторов β-лактамаз – клавулановой и оливановой кислот. Классификация антибиотиков. По типу действия антибиотики делят на бактерицидные (лактамные, аминогликозиды), вызывающие гибель микроорганизмов, и бактериостатические (макролиды, тетрациклины, левомицетин), нарушающие способность микроорганизмов делиться. По спектру действия различают антибиотики узкого и широкого действия. К последним относят тетрациклины, макролиды, аминогликозиды, которые особенно полезны в случае неидентифицированных возбудителей болезни, однако при длительном применении они вызывают у пациентов дисбактериоз. Особенность молекулярного механизма действия антибиотиков – исключительная специфичность их действия. Специфика действия их состоит в избирательном подавлении этими эффекторами одного или нескольких процессов у некоторых микроорганизмов. Таким образом, антибиотики блокируют метаболические мишени в клетках-мишенях. В зависимости от специфики действия антибиотиков на молекулярном уровне различают следующие группы соединений: 1. антибиотики, ингибирующие синтез клеточной стенки (пенициллины, ванкомицин, цефалоспорины, D-циклосерин); 2. антибиотики, нарушающие функции мембран (альбомицин, аскозин, грамицидины, кандицидины, нистатин, трихомицин, эндомицин и др.); 3. антибиотики, избирательно подавляющие синтез (обмен) нуклеиновых кислот: а) РНК (актиномицин, гризеофульвин, канамицин, неомнцин, новобиоцин, оливомицин и др.); б) ДНК (актидион, митомицины, новобиоцин, саркомицин и др.); 4. антибиотики – ингибиторы синтеза пуринов и пиримидинов (азасерин, саркомицин и др.); 5.антибиотики, подавляющие синтез белка (канамицин, метимицин, неомицин, тетрациклины, хлорамфеникол, эритромицин и др.); 6. антибиотики – ингибиторы дыхания (олигомицины, пиоцианин, усниновая кислота и др.); 7. антибиотики – ингибиторы окислительного фосфорилирования (валиномицин, грамицидины, колицины, олигомицин, тироцидин и др.); 8. антибиотики, обладающие антиметаболитными свойствами, т.е. выступают в качестве антиметаболитов аминокислот, витаминов, нуклеиновых кислот (фураномицин – антиметаболит лейцина); 9. антибиотики-иммуномодуляторы (актиномицины С и D, оливомицин,  рубомицин). В зависимости от химической природы и ряда других свойств известные антибиотики делят на следующие классы: · β-Лактамные составляют более 50 % рынка антибиотиков и относятся к азотсодержащим гетероциклическим соединениям. В эту группу входит большое число антибиотиков, молекулы которых содержат разнообразные, часто очень сложные кольчатые системы (рис 8.4). Характерная особенность строения β-Лактамных антибиотиков – наличие в молекуле β-лактамного кольца (пенициллины, цефалоспорины): · Тетрациклины входят в группу гетероциклических соединений (рис.8.5.) и обладают широким спектром действия (тетрациклин, морфоциклин, метациклин). Макролиды. Характерная особенность антибиотиков этой группы – присутствие в молекуле макроциклическою лактонного кольца, связанного с одним или несколькими углеводными остатками (рис. 8.6). К антибнотнкам-макролидам относятся метимицин, эритромицин, магнамицин, олеандомицин и др. · Аминогликозиды – группа антибиотиков, общим в химическом строении которых является наличие в молекуле аминосахара, соединённого гликозидной связью с аминоциклическим кольцом (рис 8.7). Основное клиническое значение аминогликозидов заключается в их активности в отношении аэробных грамотрицательных бактерий К ним принадлежат стрептомицины, канамицины неомицины, гентамицин, тобрамицин, нетилмицин, сизомицин, амикацин.   · Антибиотики-полипептиды.Среди изученных в химическом отношении антибиотиков этой группы наиболее распространены циклопептиды, состоящие из остатков L- и D-аминокислот. К ним относятся антибиотики, образуемые бактериями (тироцидины, грамицидины, бацитрацины, полимиксины, низины, бацилломицины и др.) и актиномицетами (этамицин, эхиномицины и др.) ·  Амфениколы. Соединения, относящиеся к этой группе, являются производными бензола (рис.8.8). К ним относятся галловая кислота, хлорамфеникол, левомицетин и др. · Антибиотики-олигомицины.К. этой группе относятся соединения, содержащие в молекуле сопряженную диеновую систему. По химическому строению эти соединения относятся к макролактонам (рис.8.9). В качестве примера можно назвать олигомицины А, В и С, ботримицин и др. · Полиеновые антибиотики, характерная особенность которых –  наличие системы, содержащей от трех до восьми сопряженных двойных связей, —(СН=СН)— (рис.8.10). Многие антибиотики этой группы содержат аминосахар (микозамин, перозамин), отдельные вещества в структуре имеют вторую азотсодержащую часть – ароматические кетоны. К числу полиеновых антибиотиков относится большое число (более 150) веществ (микротриен, ареномицин, нистатин, фумагиллин, леворин). · Антибиотики-хиноны.В группу входят бензохиноны (рапанон, фумигатин и др.), нафтохиноны (плюмбагин, яваницин и др.) и антрахиноны (эндокроцин и др.).К группе антибиотиков-хинонов относятся антрациклины, насчитывающие около 70 наименований. Многие из этих антибиотиков, образуемых стрептомицетами, обладают протиобактериальной активностью, а часть из них и противоопухолевым действием. К последним относятся дауномицин, адриамицин (доксорубицин) и кармипомнцик (рис. 8.11). · Антибиотики-депсипептиды.Характерная особенность этих антибиотиков (валиномицин, амидомицин и др.) состоит в том, что они построены из остатков α-окси- и α-аминокислот, соединенных между собой сложноэфирными и амидными связями (рис 8.12). В зависимости от биологического происхождения антибиотики подразделяют на: · антибиотики, вырабатываемые микроорганизмами, относящимися к эубактериям:пиоцианин – Pseudomonas aeruginosa, вискозин – Ps. viscose, дипломицин, низин – Lactococcus lactis, продигиозин –  Serratia marcescens, колиформин – Escherichia coli,  протаптины – Proteus vulgaris, грамицидины – Bacillus brevis, субтилин – В. subtilis, полимиксины – В. polymyxa; · антибиотики, образуемые микроорганизмами, принадлежащими к порядку Actinomycetales: а) образуемые представителями рода Streptomyces:стрептомицин – S. griseus,тетрациклины – S. aureofaciens, Str. rimosus, новобиоцин – S. spheroides, эритромицин – Saccharopolyspora erythraea,актиномицины – S. antibioticus и др.; б) образуемые представителями рода Nocardia: рифамицины – N. mediterranei, ристомицин – N.fructiferi и др.; в) образуемые родом Actinomadura:карминомицин – A. carminata и др.; г) продуцируемые родом Micromonospora: фортимицины – М. olivoasterospora,гентамицины – М. риrриrеа; · антибиотики, образуемые цианобактериями: малинголид – Lyngbya majuscula; · антибиотики, образуемые несовершенными грибами: пенициллин – Penicillium chrysogenum, гризеофульвин – P. griseofulvum,  трихотецин – Trichotecium roseum; · антибиотики, образуемые грибами, относящимися к классам базидиомицетов и аскомицетов: термофиллин – базидиомицет Lenzites thermophila, лензитин – Lenzites sepiaria, хетомин – Chaetomium cochloides (аскомицет); · антибиотики, образуемые лишайниками, водорослями и низшими растениями: усниновая кислота (бинан) – лишайником Usneaflorida, хлореллин – водорослью Chlorella vulgaris; · антибиотики, образуемые высшими растениями: аллицин – Allium sativum, рафанин –   Raphanus sativum, сативин – чеснок,  томатин – томаты, алин – лук, фитоалексины: пизатин в горохе (Pisum sativus), фазеолин в фасоли (Phaseolus vulgaris); · антибиотики животного происхождения: лизоцим, экмолин, круцин, интерферон.

Биологическая обработка органических отходов

В настоящее время разработаны и развиваются современные технологии по очистке бытовых, промышленных и сельскохозяй­ственных отходов. Наибольший интерес представляют (и имеют перспективу) естественные и самые дешевые биологические методы очистки, представляющие собой интенсификацию природных процессов разложения органических соединений микроорганизмами в аэробных или анаэробных условиях. Наряду с ними развиваются физико-химические методы фильтрации, осаждения, флотации, электрокоагуляции и др., которые применяются для очистки стоков различных видов промышленности с извлечением по возможности из них полезных продуктов.

Характеристика отходов. Органические отходы в соответствии с источником подразделяются на бытовые, промышленные и сельскохозяйственные, а по физическому состоянию – на жидкие (сточные воды), полужидкие текучие (осадки сточных вод и полужидки навоз) и твердые (бытовой мусор, подстилочный навоз). Для характеристики отходов используются специальные определения:

Абсолютно сухая масса (АСМ) – для твердых и полужидких отходов (%), или общие взвешенные вещества (ОВВ) – для сточных вод (г/кг, мг/л) – масса сухих веществ (органических и не­органических) в отходах, определенная при высушивании образца до постоянной массы при 110 °С.

Летучие вещества (ЛВ) (г/кг, мг/л) – часть загрязнений, удаляемых сжиганием при 600 – 650 °С; представлены в основном органическими веществами и включают микробную биомассу.

Зольность (г/кг, мг/л) – оставшаяся после сжигания часть – зола (минеральные соли). В сумме зольность и ЛВ дают АСМ.

Химическое потребление кислорода (ХПК) (мг/л) – количество кислородных эквивалентов, необходимое для полного химического окисления органических и неорганических загрязнений до CO2, например бихроматом калия в концентрированной сер­ий кислоте при 160 °С. Если загрязнения в сточной воде представлены органическими веществами, то концентрация их близка , значению ХПК.

Биологическое потребление кислорода (БПК) (мг/л) – количество кислородных эквивалентов, необходимое для окисления органических и неорганических загрязнений до СО2 микроорга­низмами активного ила при 25 °С , за определенное время, обычно 5 (БПК5) или 20 дней (БПКполное).

Принципы биологической обработки отходов.Обработка отходовподразумевает биологическое разложение органических соединений. В случае очистки сточных вод содержащиеся в них загрязнения должны быть практически полностью удалены. По существующим нормам содержание органических веществ в очищенной воде не должно превышать 10 мг/л. 

Деградация органических веществ осуществляется микроорганизмами как в аэробных, так и в анаэробных условиях, с разными энергетическими балансами суммарных реакций.

Аэробный процесс При аэробном биоокислении глюкозы 59 % энергии, содержащейся в ней, расходуется на прирост биомассы и 41 % составляют тепловые потери:

С6Н12О6 + 6О2 —> 6СО2 + 6Н2О + микробная биомасса + теплота.

Аэробное микробное сообщество представлено разнообразными микроорганизмами, в основном бактериями, окисляющими различные органические вещества в большинстве случаев независимо друг от друга, хотя окисление некоторых веществ осуществляется путем соокисления (кометаболизм).

Преимущество аэробного процесса состоит в высокой скорости использовании веществ в низких концентрациях, недостаток – в образовании большого количества микробной биомассы. Аэробный процесс используется при очистке бытовых, некоторых промышленных и свиноводческих сточных вод с ХПК не выше 2000 мг/л. Компостирование твердых отходов также является аэробным процессом.

Анаэробный процесс При анаэробной деградации глюкозы с образованием метана лишь 8 % энергии расходуется на прирост биомассы, 3 % составляют тепловые потери, 89 % переходит в метан:

С6Н12О6 —> 3СН4 + 3СО2 + микробная био­масса + теплота.

Анаэробная деградация органических веществ при метаногенезе осуществляется как многоступенчатый процесс, в котором необходимо участие по меньшей мере четырех групп микроорганизмов: гидролитиков, бродилыциков, ацетогенов и метаногенов. В анаэробном сообществе между микроорганизмами существуют тесные и сложные взаимосвязи, имеющие аналогии в многоклеточных организмах, поскольку ввиду субстратной специфичности метаногенов их развитие невозможно без трофической связи с бактериями предыдущих стадий. В свою очередь, метаногены, используя вещества, образуемые первичными анаэробами, определяют скорость реакций, осуществляемых этими бактериями.

Преимущество анаэробного процесса заключается в относительно незначительном образовании микробной биомассы, возможности обработки концентрированных стоков, а также в образовании энергоносителя – метана. К недостаткам следует отнести невозможности удаления органических загрязнений в низких концентрациях, и для глубокой очистки анаэробную обработку следует использовать в комбинации с последующей аэробной стадией.


Дата добавления: 2018-08-06; просмотров: 720; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!