Основные свойства определенного интеграла по отрезку (с доказательством одного из них)



1) ±g(x))dx= ±

2)  = k* , гдеk-const

3)  = 0

4) Если отрезок интегрирования [a,b] разбит на две части [a,c] и [c,b] то

- свойство аддитивности.

5) Если на [a,b]f(x)≥0, то ≥0

6) Если на [a,b] f(x)≥g(x), то

7)  = -

Доказать: ±g(x))dx= ±

Доказательство: ±g(x))dx = (f(ξk) ±g(ξk))* ( xk - xk-1) = (f(ξk)* ( xk - xk-1) ±g(ξk)* ( xk - xk-1)) = f(ξk)* ( xk - xk-1) ± g(ξk)* ( xk - xk-1) = f(ξk)*( xk - xk-1) ± g(ξk)*( xk - xk-1) = ±

Теорема об оценке определенного интеграла по отрезку (формулировка, доказательство), геометрический смысл.

Если m – наим. значение функции f(x), M–наиб. значение функции f(x) на [a,b] ; (m ≤ f(x) ≤ M)

m(b-a) ≤ ≤ M(b-a)

Площадь криволинейной трапеции не меньше площади прямоугольника с тем же основанием [a,b] и высотой, равной mи не больше площади прямоугольника с тем же основанием и высотой равной М.

Дано: m ≤ f(x) ≤ M

Доказать: m(b-a) ≤  ≤ M(b-a)

Доказательство:

1) Пусть f(P) ≤ M, ∀P∈[a,b]

 = (Pi)*Δxi M*Δxi ≤M Δxi ≤ M*(b-a)

2) Пустьm ≤f(P), ∀P∈[a,b]

 = (Pi)*Δxi m*Δxi ≥ m* Δxi ≥ m*(b-a)

Теорема о среднем (формулировка, доказательство), геометрический смысл.

Средним значение функции f(x) на отрезке называется отношение значения определенного интеграла от этой функции по отрезку к длине этого отрезка:

Fсред. =

Теорема: Если функция f(x) непрерывна на отрезке [a,b], то существует хотя бы одна точка C∈ (a,b); что f(C) = fсред.

f(C) =  = f(C)*

 

Криволинейная трапеция равновелика прямоугольнику с тем же основанием [a,b] и высотой равной f(C).

 

Дано: f(x) непрерывна на [a,b]

Доказать: ∃C∈ (a,b): f(C) = fсред.

Доказательство:

Так как f(x) непрерывна на [a,b], то m ≤ f(x) ≤ M

Тогда по теореме об оценке

m(b-a) ≤  ≤ M(b-a)

m ≤  ≤ M , т.к. b-a≠ 0

m ≤ fсред≤ M

f(x) непрерывнана[a,b], значит, еслиm ≤ λ≤ M, то∃ C∈ (a,b): f(C) = λ→ f(C) = fсред

Интеграл с переменным верхним пределом.

Пусть функция f интегрируема на [a; b]. Тогда по теореме о существования определенного интеграла функция f интегрируема на [a; x] для любого x ∈ [a; b]. Рассмотрим функцию F(x) = . Эта функция называется интегралом с переменным верхним пределом x.

Теорема о производной интеграла с переменным верхним пределом (формулировка)

Производная интеграла с переменным верхним пределом от непрерывной функции равна подынтегральной функции, в которой переменная интегрирования заменена верхним пределом.

( )’ = f(x)

Определение дифференциального уравнения, его порядка, решения.

Диф. уравнением (ДУ)называется уравнение, связующее независимую переменную х, искомую функцию yи её производные, y’, y’’, y(n).

F(x , y , y’, y’’, … , y(n)) = 0

Порядком ДУназывают наивысший порядок производной, входящей в это уравнение.

Решением ДУназывается всякая функция y = f(x), которая будучи подставлена в это уравнение, превращает её в тождество.

Задача Коши для уравнения y’ = f(x,y) и её геометрический смысл.

Задача нахождения частного решения, удовлетворяющего данному начальному условию, называется задачей Коши для уравнения 1-го порядка.

y’ = f(x,y) ; y(x0) = y0

Геометрический смысл:

Найти ту интегральную кривую, которая проходит через данную точку.


Дата добавления: 2018-08-06; просмотров: 1569; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!