Система охлаждения турбонаддува
СОДЕРЖАНИЕ
ВВЕДЕНИЕ
История наддува так же стара, как и история самих двигателей внутреннего сгорания. Известно, что оба «прародителя» современных ДВС, и Готлиб Даймлер, и Рудольф Дизель, отчетливо представляли, что предварительное сжатие воздуха, поступающего в цилиндры, позволяет получить прибавку в мощности. Оба еще в конце 19-го века предпринимали попытки применить наддув в конструкции своих двигателей и оба потерпели неудачу. Что касается эффективной мощности, она действительно возрастала, но на КПД «первобытных» бензиновых и дизельных моторов наддув сказывался отрицательно. Это сейчас понятно, что виноват был не сам принцип наддува, а его реализация. Тогда же результаты экспериментов дали основание сделать отрицательный вывод о пользе применения наддува. Дизель был наиболее категоричен и назвал воздействие предварительной компрессии на работу двигателя чрезвычайно вредным.
Неудачи первых экспериментов надолго отодвинули идею предварительного наддува. Робкие попытки вернуться к ней предпринимались еще до начала Первой мировой войны. Бензиновые двигатели с наддувом изредка появлялись на гоночных автомобилях и тепловозах. Война активизировала разработки в этой области, и авиационные моторы с наддувом помогали самолетам компенсировать потерю мощности из-за уменьшения плотности воздуха при полетах на больших высотах. Усилиями немецкой фирмы MAN в середине 20-х годов были разработаны первые дизельные двигатели с наддувом. Применялись они в основном на судах, в том числе, подводных лодках, и локомотивах.
Одна из задач, которые решаются применением турбонаддува, - увеличение мощности и крутящего момента двигателя при неизменных массогабаритных показателях.
Причина прироста мощности и крутящего момента турбомоторов – резкое увеличение среднего эффективного давления в цилиндре.
История свидетельствует, что в 1905 году выпускник Швейцарского технического университета Альфред Бюхи получил от Федерального патентного ведомства США свой первый патент. Патент касался принципа предварительного сжатия рабочей среды поршневой машины за счет частичного использования энергии отработавших газов. Впоследствии Бюхи запатентовал еще несколько изобретений, в том числе, конструкцию устройства, объединявшего на одном валу крыльчатки компрессора и турбины, работающей на выхлопных газах двигателя. Так родилась идея газового турбонагнетателя или турбокомпрессора.
«Инкубационный период» этого изобретения длился очень долго. Первое практическое применение турбонаддува на транспортных двигателях состоялось лишь в 1925 году. Турбонагнетатели прошли примерно такой же путь, как и компрессоры. Вначале они применялись на судовых двигателях, в конце 30-х – на моторах грузовиков. Дебют турбокомпрессоров на серийных легковых автомобилях состоялся гораздо позже, лишь в начале 60-х, когда концерн General Motors представил на рынок две модели автомобилей с турбонагнетателями: Chevrolet Corvair Monza и Oldsmobile Jetfire. Как оказалось, их премьера было несколько преждевременной. Большой расход топлива, невысокий крутящий момент и низкая надежность турбомоторов привели к тому, что через год эти модели были сняты с производства, дискредитировав идею турбонаддува.
Несмотря на кажущуюся простоту самой идеи и конструкции газового турбонагнетателя, создание работоспособных агрегатов турбонаддува вкупе с устройствами регулирования – задача непростая. Ее решение требует глубоких теоретических и прикладных исследований, а также применения высокотехнологичных процессов в производстве. Представьте, вал турбокомпрессора вращается с частотой 200 000 мин-1 и даже больше. То есть, пока вы делаете один вдох, турбонагнетатель совершает более 3 000 оборотов. При этом температура крыльчатки турбины, взаимодействующей с выхлопными газами, «зашкаливает» за тысячу градусов, в то время как с другой стороны небольшого вала, в зоне крыльчатки компрессора она раз в пять меньше. Понятно, что даже обеспечение работоспособности такого устройства – проблема, не говоря уже о ресурсе в 200-300 тысяч километров пробега автомобиля
И все же проблемы применения турбонаддува в двигателях легковых автомобилей постепенно решались. Достаточно компактное устройство, к тому же утилизирующее энергию выхлопных газов, обеспечивало немалые преимущества: небывалый рост удельной мощности и крутящего момента, которые зачастую было невозможно достичь другими способами. Именно эти факторы имели первостепенное значение в середине прошлого века. Как многие другие технические новации, турбонаддув прокладывал себе дорогу в «серию» через автоспорт. Гонки «Формулы-1», соревнования в Индианаполисе, на которых апробировалась турботехника, стали важным этапом ее опытной отработки и доказали, что расчет на турбонаддув оправдан.
Серийный выпуск турбодизелей первой освоила фирма Mercedes-Benz в 1978 году. Позже этим направлением активно занялись французские моторостроители, Peugeot и Citroen. Таким образом, к началу 80-х годов в линейке практически каждого автопроизводителя легковых автомобилей присутствовали одна или несколько моделей с турбодвигателем. В то же время, механические нагнетатели сдали свои позиции, хотя говорить о бесперспективности их применения на небольших ДВС пока преждевременно.
Прогресс турботехники привел к тому, что в настоящее время доля легковых автомобилей с турбированными моторами составляет примерно половину от общего числа машин в возрасте до 5 лет и продолжает увеличиваться. Из них порядка 20% - бензиновые автомобили, остальные – дизельные. Такое соотношение не случайно. Дизели существенно лучше приспособлены к наддуву вообще, и к турбонаддуву в частности. В отличие от бензиновых моторов, в которых давление наддува ограничивается опасностью возникновения детонации, им такое явление неведомо. Дизель можно наддувать вплоть до достижения предельных механических нагрузок в его механизмах. К тому же отсутствие дросселирования воздуха на впуске и высокая степень сжатия обеспечивают большее давление отработавших газов и их меньшую температуру в сравнении с бензиновыми моторами.
Что касается собственно турботехники, ее разработка и производство выделились в отдельную отрасль промышленности. Дело это не простое и требует особых знаний и технологий. Занимаются им отнюдь не автоконцерны, а ряд специализированных фирм. Некоторые из них имеют в этой области опыт, исчисляющийся многими десятилетиями. Абсолютный лидер в деле разработки и производства турбокомпрессоров – известная американская фирма Garrett. Ставшая в 1999 году частью международного концерна Honeywell, она получила новое название Honeywell Turbo Technologies, оставив прежнее имя в качестве торговой марки. Второе место по объемам производства занимает немецкая компания Borg Warner Turbosystems, которая после слияния с фирмами KKK, Schwitzer и Hitachi также владеет и этими брендами.
Английская компания Holset специализируется на агрегатах турбонаддува для коммерческих автомобилей. Из производителей автомобилей лишь концерн Mitsubishi имеет в своей структуре предприятие по производству турбокомпрессоров. Фирма MHI полностью обеспечивает турбокомпрессорами потребности Mitsubishi, а также поставляет несколько моделей для моторов Volvo и BMW. Даже такой «монстр» как Toyota c 2001 года практически отказалась от изготовления турбокомпрессоров и перешла на использование изделий Garrett. Оставшаяся часть турбо-рынка закрывается мелкими фирмами, а также продукцией, выпускающейся известными производителями для крупных клиентов под другими торговыми марками.
Анализ задания на дипломный проект
Турбонаддув — устройство в автомобиле, которое направлено на увеличение давления во впускном коллекторе автомобиля для того, чтобы обеспечить большее поступление воздуха, а значит и кислорода, в камеру сгорания.
Главное назначение турбины – с ее помощью можно значительно увеличить мощность автомобиля.
Принцип работы турбокомпрессора
Принцип работы турбонаддува несложен: горячие выхлопные газы через выпускной коллектор поступают в горячую часть турбины, проходят через крыльчатку горячей части приводя ее и вал на который она крепится в движение. На этом же вале закреплена крыльчатка самого компрессора в холодной части турбины, эта крыльчатка при вращении создает давление во впускном тракте и впускном коллекторе, что обеспечивает большее поступление воздуха в камеру сгорания.
Турбонаддув состоит из двух улиток — улитки компрессора, через которую всасывается воздух и нагнетается во впускной коллектор, и улитки горячей части, через которую проходят выхлопные газы вращая колесо турбины и выходят в выхлопной тракт. Из крыльчатки компрессора и крыльчатки горячей части. Из шарикоподшипникового картриджа. Из корпуса, который соединяет обе улитки, держит подшипники, так же в корпусе находится охлаждающий контур.
В процессе работы турбокомпрессор подвергается очень большим термодинамическим нагрузкам. В горячую часть турбины попадают выхлопные газы очень большой температуры 800-9000 °С, поэтому корпус турбины изготавливают из чугуна особого состава и особого способа отливки.
Частота вращения вала турбокомпрессора достигает 200 000 об/мин и более, поэтому изготовление деталей требует большой точности, подгонки и балансировки. Помимо этого в турбине высокие требования к используемым смазочным материалам. В некоторых турбинах система смазки служит так и системой охлаждения подшипниковой части турбины.
Система охлаждения турбонаддува
Система охлаждения турбонаддува двигателя служит для улучшения теплоотдачи частей и механизмов турбокомпрессора.
Существует два самых распространенных способа охлаждения деталей турбокомпрессора — охлаждение маслом, которое используется для смазки подшипников и комплексное охлаждение маслом и антифризом из общей системы охлаждения автомобилем.
Охлаждение маслом.
Преимущества:
1. Более простая конструкция
2. Меньшая стоимость изготовления самой турбины
Недостатки:
1. Меньшая эффективность охлаждения по сравнению с комплексной системой
2. Более требовательна к качеству масла и к его более частой смене
3. Более требовательна к контролю за температурным режимом масла
Изначально, большинство серийных двигателей с турбонаддувом оснащались турбинами с масляным охлаждением. При прохождении через шарикоподшипниковую часть масло сильно нагревалось. Тогда, когда температура выходила за пределы нормального рабочего температурного диапазона, масло начинало закипать, коксоваться забивая каналы и ограничивая доступ смазки и охлаждения к подшипникам. Это приводило к быстрому износу, заклиниванию и дорогостоящему ремонту. Причин у неполадки могло быть несколько — некачественной масло или не рекомендованное для данного типа двигателей, превышение рекомендованы сроков замены масла, неисправности в системе смазки двигателя и пр.
Комплексное охлаждение маслом и антифризом
Преимущества:
1. Большая эффективность охлаждения
Недостатки:
1. Более сложная конструкция самого турбокомпрессора, как следствие большая стоимость
При охлаждении турбокомпрессора маслом и антифризом повышается эффективность и такие проблемы, как закипание и коксование масла, практически не встречаются. Но данная систем охлаждения имеет более сложную конструкцию т.к. имеет раздельные масляный контур и контур охлаждающей жидкости. Масло как и прежде служит для смазки подшипников и для охлаждения, а антифриз, который используется из общей системы охлаждения двигателя, не дает перегреться и закипеть маслу. Как следствие увеличивается стоимость самой конструкции.
При работе турбины воздух под действием компрессора сжимается и, как следствие, очень сильно греется, что приводит к нежелательным последствиям т.к. чем выше температура воздуха, тем меньшее количество кислорода в нем содержится — тем меньше эффективность наддува. С этим явлением призван бороться интеркулер — промежуточный охладитель воздуха.
Нагрев воздуха не единственная проблема, с которой пытаются справиться конструкторы при проектировании турбодвигателя. Насущной проблемой является инерционность турбины — задержка в реакции мотора на открытие дроссельной заслонки. Турбина выходит на пик своих возможностей при определенных оборотах двигателя, отсюда и появилось мнение, что турбина включается при определенных оборотах. Турбина в большинстве случаев, работает всегда, а значение оборотов при которых ее эффективность максимальная у каждого двигателя и у каждой турбины разные. В погоне за решением этой проблемы появились системы их двух турбин, турбины с изменяемой геометрией сопла и изменяемым углом наклона крыльчатки (VGT), изменяются материалы частей чтобы повысить прочность и увеличить вес (керамические лопатки крыльчатки) и пр.
В своем дипломном проекте я хочу показать возможность установки турбонаддува на двигатель ВАЗ-21126 ( Приора). Тем самым испытать теоретическую возможность установки этого агрегата на данный двигатель и будет ли это целесообразно.
1 Расчетно – конструкторская часть
1.1 Описание конструкции и характеристика прототипа двигателя
Двигатель Лада Приора устанавливается на авто ВАЗ 2170 и его модификации. В цилиндропоршневом блоке двигателя 21126 стенки цилиндров хорошо обработаны методом хонингования для получения внутренних поверхностей улучшенного качества. Чугунный коленчатый вал 11183 отличается увеличенным радиусом кривошипа. Оригинальный шкив зубчатой конструкции индексирован специальным номером 21126.
Полукруглый профиль зубцов обеспечивает зацепление с фирменным ремнем, имеющим 137 зубцов такого же профиля, газораспределительного механизма. Срок использования ремня зубчатого фирмы Gates рассчитан на 200 тыс. км.
Шатунно-поршневая группа разработана фирмой Federal Mogul. Инженерами создана конструкция, весом на 30% меньшим, чем у модели 2110. Поршневые кольца Federal Mogul имеют меньшую толщину. С целью снижения потерь от трения шатун утончен, и его головка не касается коленчатого вала. Для установки крышки шатуна используются оригинальные болты одноразового использования. Ширина новых шатунных вкладышей равна 17,2 мм.
Более тонкие кольца поршневые, компрессионное верхнее и компрессионное нижнее, имеют высоту, равную 1,2 и 1,5 мм соответственно. Маслосъемное кольцо выполнено высотой 2 мм.
Чугунная головка блока цилиндров 21126 — 1003011, рассчитанная на Приору 16 клапанов, имеет площадку, подходящую под новый механизм натяжения ГРМ ремня. Головка отлита заодно со стаканами колодцев под свечи.
Прокладка ГБЦ имеет два металлических слоя, ее общая толщина равна 0,45 мм. Конструкцией детали предусмотрены специальные отверстия для цилиндров. Диаметр каждого отверстия равен 82мм.
Каталитический нейтрализатор — обеспечивает выполнение требований по нормам токсичности Евро 3 и Евро 4
В водяном насосе произведены изменения для продления срока эксплуатации — использование подшипников и сальников другого вида.
Система зажигания и топливная система силового агрегата не отличаются от ВАЗ 11194. Свечи оборудованы индивидуальными катушками зажигания. Топливные рампы, изготовленные из нержавейки, подходят для установки фирменных форсунок SIEMENS или BOSCH, подающих горючее в соответствии с определенными фазами.
Универсальная схема смазочной системы состоит из следующих составляющих:
1. Насос масляный, состоящий из шестерен.
2. Картер стальной под блоком цилиндров.
3. Фильтр масляный.
4. Датчик масляного давления.
Таблица 1 -Характеристики двигателя 21126 1.6 16V
| Марка двигателя | 21126 |
| Годы выпуска | 2007-н.в. |
| Материал блока цилиндров | чугун |
| Система питания | инжектор |
| Тип | рядный |
| Количество цилиндров | 4 |
| Клапанов на цилиндр | 4 |
| Ход поршня, мм | 75.6 |
| Диаметр цилиндра, мм | 82 |
| Степень сжатия | 11 |
| Объем двигателя, куб.см | 1597 |
| Мощность двигателя, л.с./об.мин | 98/5600 |
| Крутящий момент, Нм/об.мин | 145/4000 |
| Топливо | 95 |
| Расход топлива, л/100 км —город —трасса — смешанный | 9.8 5.4 7.2 |
| Расход масла, гр./1000 км | 50г на 1000 |
| Масло в двигатель | 5W-30 5W-40 10W-40 15W40 |
| Сколько масла в двигателе | 3.5 |
| Замена масла проводится, км | 10000 |
| Ресурс двигателя, тыс. км —по данным завода — на практике | 200 200 |
Дата добавления: 2018-08-06; просмотров: 1653; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!
