ПЕРЕХОДНЫЙ ПРОЦЕСС В НЕПОДВИЖНЫХ МАГНИТОСВЯЗНЫХ ЦЕПЯХ



Раздел I. ОБЩИЕ СВЕДЕНИЯ О ПереходныХ процессАХ. общая оценка устойчивости РЕЖИМА

Тема 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ, ПРИНИМАЕМЫЕ ПРИ АНАЛИЗЕ

Электрические системы, режимы которых изучаются в настоящем курсе, не линейны. Нелинейность их в основном определяются двумя причинами: а)зависимостью параметров системы ( активных и реактивных сопротивлений, коэффициентов намагничивания, коэффициентов усиления регуляторов и т. д.) от параметров режима; б) нелинейностью связи параметров режима между собой.

Нелинейность параметров системы обычно не учитывается, исключения особо оговариваются. Нелинейности связей параметров режима, как правило, учитываются. Случаи, когда от такого учета отказываются, специально подчеркиваются; система при этом называется линеаризованной.

У процессов, связанных с синусоидальными изменениями параметров режима основной рабочей частоты (50 Гц), обычно рассматриваются не мгновенные значения, а их огибающие. Анализ, проводимый без этого упрощения, называется или анализом по полным уравнениям с учетом влияния изменения мгновенных значений, или анализом в мгновенных значениях, или анализом по уравнениям Парка-Горева. Весьма существенно, что при расчете по огибающим изменения электрической мощности принимаются происходящими мгновенно.

Все упрощения анализа переходных процессов заключаются в выделении главного, практически существенного для решения поставленных задач. Здесь, как и в других инженерных задачах, из сложных явлений для рассмотрения выделяют отдельные процессы, характеризуемые возможно меньшим числом параметров и более простыми соотношениями. При таком подходе не отражаются детали, но дается достаточно надежная для инженерных задач характеристика явления.

Упрощения при рассмотрении поставленных в данном курсе задач необходимы еще и для того, чтобы сделать все расчеты и представления о работе систем наиболее наглядными и достаточно легко проверяемыми. Инженеру очень важно понимать физическую сущность исследуемого явления и уметь наглядно представлять полученные результаты, пользуясь упрощенными схемами замещения и моделями. Поэтому в настоящем курсе при рассмотрении ряда вопросов приходится отказываться от математической строгости решения, отбрасывать второстепенные факторы, упрощая этим методику исследования.

Применение новых средств управления и регулирования системы заставляет инженера обращаться к более сложным математическим методам, широко использовать вычислительную технику. Однако это вовсе не означает то, что надо отказаться от простых расчетов, проводимых на основе схем замещения и упрощенных характеристик, позволяющих выделить у исследуемого явления свойства, которые являются главнейшими при решении поставленных задач. Одним из упрощающих приемов, широко применяемых при анализе переходных процессов, является замена реальных динамических характеристик элементов электрических систем их статическим и характеристиками, а также рассмотрение динамической электрической системы как системы позиционной, хотя, строго подходя к задаче, нужно отметить грубость такого допущения. Под позиционной системой понимается система, параметры режима которой зависят только от данного состояния системы, от взаимного положения ее элементов (например, роторов, генераторов) независимо от того, как было достигнуто это состояние, как система пришла к данному положению и как она движется дальше.

Под статическими характеристиками понимаются графически или аналитически представленные связи каких-либо параметров режима с другими его параметрами и параметрами системы. Эти связи выявляются в условиях установившегося или переходного режима системы, но при допущениях, позволяющих считать эти связи не зависящими от времени.

Под динамическими характеристиками понимаются взаимосвязи параметров, полученные в условиях, когда указанные параметры или часть их зависят от времени.

Таким образом, статическая характеристика представлена зависимостью x = φ(y1,y2,…,yn), а динамическая – зависимостью x = φ ( y1,y2,…,yn,t,dy1/dt, dy2/dt,….dyn/dt). Возможны динамические характеристики, отражающие влияние не только первых производных параметров, но и высших производных.

Статические характеристики достаточно полно описывают позиционную систему, динамические характеристики- динамическую систему.

ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К РЕЖИМАМ

Во время переходного режима система переходит от одного установившегося режима к другому или после возмущения возвращается к исходному установившемуся режиму. Режимы электрических систем, как установившиеся, так и переходные, должны отвечать определенным требованиям, которые надо иметь в виду при проведении расчетов. Так, в исходном режиме, являющемся, как правило, нормальным рабочим режимом системы, должны быть обеспечены:

к а ч е с т в о – снабжение потребителей энергией, отвечающей по своим показателям установленным нормативам;

н а д е ж н о с т ь – снабжение потребителей энергией без перерыва и без снижения ее качества длительнее, чем для данной системы и данного вида потребителей это предусмотрено соответствующими нормативами, устойчивое сохранение заданного режима (устойчивость);

э к о н о м и ч н о с т ь – надежное снабжение потребителей энергией удовлетворительного качества при возможно меньших затратах средств на ее производство и передачу.

Переходные режимы электрических систем практически всегда должны заканчиваться некоторым желательным (по тем или иным соображениям) установившимся режимом. Существенно знать, будет ли этот режим осуществим при параметрах, принятых в расчете; а если осуществим, то будет ли он устойчив и достаточно надежен для того, чтобы система могла длительно работать, не боясь относительно небольших случайных изменений (малых возмущений), которые не должны приводить к нарушению ее устойчивости. Оценивая качество переходного режима в целом или наиболее важных для данной инженерной задачи процессов, необходимо потребовать, чтобы происходящие изменения параметров режима не могла существенно снизить качество энергоснабжения потребителей. Для этого прежде всего необходимо, чтобы рассматриваемые переходные процессы заканчивались достаточно быстро. Так, например, если толчок (изменение) нагрузки или какая-либо коммутационная операция будет вызывать длительные колебания роторов генераторов системы и соответственно колебания напряжения у потребителей, то переходный процесс будет неудовлетворительным по условиям обеспечения потребителей качественной энергией. Неудовлетворительным будет и качество переходного процесса, если вследствие него возникнут новые переходные процессы, которые в конечном счете могут привести к неустойчивости системы или недопустимому понижению качества энергии, отдаваемой потребителю. Нельзя считать переходный процесс удовлетворительным, если после его окончания система будет иметь слишком малый запас устойчивости. Иначе говоря, переходный процесс должен заканчиваться достаточно надежным режимом.

При расчетах переходных процессов необходимо, следовательно, выполнить ряд условий, т.е. обеспечить:

1. осуществимость режима, который должен наступить после затухания переходных процессов;

2. устойчивость перехода от одного режима к другому и устойчивость режима, наступающего после затухания переходных процессов;

3. удовлетворительное качество переходного процесса;

4. экономичность мероприятий, обеспечивающих соблюдение требований, предъявляемых к переходному процессу.

 

 

Лекция 1

 

ВВЕДЕНИЕ. СИМИТРИЧНЫЙ ПЕРЕХОДНЫЙ ПРОЦЕСС

 

При проектировании и эксплуатации электрических установок для решения целого ряда технических вопросов требуется предварительно произвести расчет переходных процессов, вызванных внезапным коротким замыканием (КЗ), сбросом и набросом нагрузки, потерей возбуждения генераторов и т.п. Нарушение режима работы оборудования и устойчивости электростанций может привести к обесточиванию большого числа потребителей электроэнергии, повреждению оборудования и другим тяжелым последствиям.

Методы расчета токов КЗ выбираются соответственно целевому назначению, в результате которого находятся необходимые величины для заданного момента времени или их изменение в течение всего переходного процесса. Наиболее высокую точность определения расчетных величин токов КЗ в электрической системе дает метод с использованием операционного исчисления по уравнениям Парка - Горева [1]. Этот метод применяется редко ввиду трудоемкости выкладок, он может быть использован для оценки других приближенных методов как эталонный. В практических расчетах используется ряд приближенных инженерных методов [2].

Основными причинами возникновения электромагнитных переходных процессов являются:

·   Включение и отключение двигателей и других приемников электрической энергии.

·   Короткое замыкание в электрической системе, автоматическое повторное включение линии на сохранившееся короткое замыкание.

·   Возникновение местной несимметрии в системе.

·   Действие форсировки возбуждения синхронных машин, их развозбуждение.

·   Несинхронное включение синхронных машин.

Коротким замыканием называют всякое, не предусмотренное нормальными условиями работы, замыкание между фазами, а в системах с заземленными нейтралями – замыкание одной или нескольких фаз на землю.

В трехфазных системах с заземленной нейтралью различают следующие основные виды коротких замыканий в одной точке: трехфазное короткое замыкание – К(3), двухфазное короткое замыкание – К(2), однофазное короткое замыкание – К(1), двухфазное короткое замыкание на землю – К(1,1).

Симметричным называют такое короткое замыкание, когда при нем все фазы остаются в одинаковых условиях, иначе короткое замыкание называют несимметричным.

Следствиями действия тока короткого замыкания являются:

· Дополнительный нагрев токоведущих элементов и проводников выше допустимого.

· Возникновение больших механических усилий между проводниками.

· Снижение напряжения, приводящее к ухудшению эффективности работы потребителей, авариям на электростанциях и подстанциях.

· Нарушение работы линий связи и сигнализации, за счет наведения дополнительных магнитных потоков.

· Нарушение устойчивости электрических систем.

Токи короткого замыкания с учетом действия устройств релейной защиты обычно существуют непродолжительное время, но их приходится учитывать и тщательно рассчитывать ввиду вышеуказанных последствий. По режиму короткого замыкания должны проверяться

1) в электроустановках выше 1 кВ:

а) электрические аппараты, токопроводы, кабели и другие проводники, а также опорные конструкции для них;

б) воздушные линии при ударном токе короткого замыкания 50 кА и более для предупреждения схлестывания проводов при динамическом действии токов короткого замыкания.

2) в электроустановках до 1 кВ – распределительные щиты, токопроводы и силовые шкафы.

Аппараты, которые предназначены для отключения токов короткого замыкания, должны обладать способностью производить эти операции при всех возможных токах короткого замыкания

Лекция 2

ПЕРЕХОДНЫЙ ПРОЦЕСС В НЕПОДВИЖНЫХ МАГНИТОСВЯЗНЫХ ЦЕПЯХ

Расчеты токов короткого замыкания необходимы для решения следующих задач:

· выбора схем электрических соединений;

· выявления условий работы потребителей при аварийных режимах;

· выбора аппаратов и проводников;

· проектирования и настройки устройств релейной защиты;

· выбора систем автоматического регулирования возбуждения;

· анализа устойчивости работы энегетических систем.

Допущения, принимаемые в расчетах токов КЗ:

1) закон изменения периодической слагающей тока КЗ для схемы с одним генератором можно использовать для приближенной оценки этой слагающей для схемы с несколькими генераторами;

2) учет апериодической слагающей можно проводить приближенно;

3) ротор синхронной машины симметричен;

4) учет системы проводят приближенно.

Расчет токов КЗ в электрических сетях напряжением выше 1 кВ ведется в системе именованных или относительных единиц (о.е.). Под относительным значением какой-либо величины понимают её отношение к другой одноименной величине, выбранной за единицу измерения. Величины, принятые в качестве единиц измерения называют базисными. Обычно произвольно выбирают базисную мощность Sб, МВ×А, близкую к установленной мощности генераторов в расчетной схеме и округленную до целого числа. Принимают базисное напряжение Uб, кВ, на одной из ступеней, базисные напряжения на других ступенях пересчитывают по действительным (точное приведение) или по приближенным (приближенное приведение) коэффициентам трансформации. Приближенные коэффициенты трансформации определяются по шкале средних номинальных напряжений: 1175; 770; 515; 340; 230; 154; 115; 37; 24; 18; 15,75; 13,8; 10,5; 6,3; 3,15; 0,69; 0,525; 0,4; 0,23 кВ. 

Ниже приведены формулы для определения сопротивлений элементов электрической сети в системе относительных единиц при выбранных базисных условиях.

Синхронное индуктивное сопротивление генератора Хd и его сверхпереходное сопротивление :

Хd = Хd(н) ;  = ,

где Sн - номинальная мощность генератора, МВ×А; Хd(н) - синхронное сопротивление генератора по продольной оси при номинальных условиях, о.е.;  - его сверхпереходное сопротивление при номинальных условиях, о.е.

Индуктивное сопротивление двухобмоточного трансформатора Хт:

Хт = ,

где Uк - напряжение короткого замыкания, %; Sн - номинальная мощность трансформатора, МВ×А.

Индуктивные сопротивления обмоток высшего (ВН) Хв и низшего напряжений (НН) Хн1 = Хн2, о.е., трехобмоточного трансформатора с расщепленной на 2 цепи обмоткой НН:

 

Хв =  (1 - );    Хн1 = Хн2 = ,

 

где Uк - напряжение короткого замыкания обмоток ВН и НН, %; Sн - номинальная мощность трансформатора, МВ×А; Кр - коэффициент связи. Для трехфазных трансформаторов, у которых обмотка НН расщеплена на две цепи, Кp = 3,5.

Индуктивные сопротивления обмоток ВН Хв, среднего (СН) Хс, НН Хн, о.е., трехобмоточного трансформатора соответственно:

Хв = ; Хс = ; Хн = ,

где UкВ, UкС, UкН - напряжения короткого замыкания обмоток ВН, СН и НН соответственно, %; Sн - номинальная мощность трансформатора или автотрансформатора, МВ×А.

Напряжения короткого замыкания обмоток ВН UкВ, СН UкС и НН UкН, % :

UкВ = 0,5(Uвс + Uвн - Uсн);

UкС = 0,5(Uвс + Uсн - Uвн);

UкН = 0,5(Uвн + Uсн - Uвс),

где Uвс, Uвн, Uсн - напряжения короткого замыкания по обмоткам высокого и среднего, высокого и низкого, среднего и низкого напряжений соответственно, %.

Индуктивное сопротивление одинарного реактора Хр, о.е.,

 

Хр = ,

где Uср.н - среднее номинальное напряжение ступени, где установлен реактор, кВ; Iн - номинальный ток реактора, кА; Iб – базисный ток, кА.

Индуктивное сопротивление воздушной, кабельной линий Хл,о.е.,

Хл = ,

 

где Х0 - удельное сопротивление линии, Ом/км; Uср.н- среднее номинальное напряжение линии, кВ; l - длина линии, км.

Индуктивное сопротивление асинхронного двигателя Хдв, о.е.,

Хдв = Хдв(н) ,

где Sн - номинальная мощность двигателя, МВ×А; Хдв(н) = 1/Iп - сопротивление двигателя при номинальных условиях, о.е; Iп - величина кратности пускового тока двигателя, о.е.

Сопротивление комплексной нагрузки Zн,о.е.,

Zн = Zн(н) ,

где Zн(н) - сопротивление комплексной нагрузки при номинальных условиях, о.е.; Sн - номинальная мощность нагрузки, МВ×А.

Активное сопротивление генератора (синхронного двигателя) R, о.е.,

R = ,

где Та- постоянная времени апериодической составляющей тока генератора, с; w = 314 - угловая синхронная скорость, рад/c.

Активное сопротивление двухобмоточного трансформатора Rт, о.е.,

Rт = DРк ,

где DРк- потери короткого замыкания, кВт; Sн - номинальная мощность трансформатора, МВ×А.

Активные сопротивления обмоток ВН Rв и НН Rн1 = Rн2 двухобмоточного трансформатора с расщепленной обмоткой НН, о.е.,

Rв =DРк ; Rн1 = Rн2 = 2Rв.

Активные сопротивления обмоток ВН Rв, СН Rс, и НН Rн трехобмоточного трансформатора или автотрансформатора, о.е.,

Rв = DРкв ; Rс = DРкс ; Rн = DРкн ,

 

где DРкв,DРкс, DРкн - потери короткого замыкания обмоток ВН, СН и НН соответственно, кВт; Sн - номинальная мощность трансформатора, МВ×А.

Потери короткого замыкания обмоток ВН DРкв, СН DРкс и НН DРкн, кВт:

DРкв = 0,5(DРквс + DРквн - DРксн);

DРкс = 0,5(DРквс + DРксн - DРквн);

DРкн = 0,5(DРквн + DРксн - DРквс),

 

где DРквс, DРквн, DРксн - потери короткого замыкания по обмоткам высокого и среднего, высокого и низкого, среднего и низкого напряжений соответственно, кВт.

Активное сопротивление одинарного реактора Rр, о.е.,

 

Rр = ,

где DРн - номинальные потери на фазу реактора, мВт.

Активное сопротивление воздушной, кабельной линий Rл,о.е.,

 

Rл = ,

где R0 - удельное активное сопротивление линии, Ом/км.

Активное сопротивление асинхронного электродвигателя Rдв, о.е.,

 

Rдв = ,

где Рн - номинальная активная мощность двигателя, МВт; Мп - величина кратности пускового момента двигателя, о.е., сosjн - номинальный коэффициент мощности.

При известном отношении Х/R = к. Активные сопротивления элементов системы определяются как R = Х×к.

Базисные величины напряжения Uб*, тока Iб*, полного сопротивления Zб*, ЭДС Еб* и мощности Sб* , о.е.:

Uб* = ;    Iб* = ; Zб* = ; Еб* = , Sб* = ,

где U - напряжение на расчетной ступени, кВ; I – ток, кА; Z - сопротивление, Ом; Е - ЭДС генератора или двигателя, кВ; S – мощность, МВ×А; Uб - базисное напряжение на расчетной ступени, кВ; Iб = Sб/Ö3Uб - базисный ток на расчетной ступени, кА; Zб = Uб/Ö3Iб = /Sб - базисное сопротивление на расчетной ступени, Ом.

Обратный пересчет из относительных единиц в именованные ведется по выражениям

 

U =  Uб*Uб ;    I = Iб*Iб ; Z = Zб*Zб ;       S = Sб*Sб .

 

Лекция 3


Дата добавления: 2018-08-06; просмотров: 533; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!