Достоинства и недостатки объектно-ориентированного программирования.



Особенности объектно-ориентированного программирования. Понятия класс, объект, метод, событие

Объектно-ориентированное программирование' (ООП) — парадигма программирования, в которой основными концепциями являются понятия объектов и классов (либо, в менее известном варианте языков с прототипированием, — прототипов).

Класс — это тип, описывающий устройство объектов. Понятие «класс» подразумевает некоторое поведение и способ представления. Понятие «объект» подразумевает нечто, что обладает определённым поведением и способом представления. Говорят, что объект — это экземпляр класса. Класс можно сравнить с чертежом, согласно которому создаются объекты. Обычно классы разрабатывают таким образом, чтобы их объекты соответствовали объектам предметной области.

Класс является описываемой на языке терминологии (пространства имён) исходного кода моделью ещё не существующей сущности, т.н. объекта.

Объект — сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса (например, после запуска результатов компиляции (и линковки) исходного кода на выполнение).

Прототип — это объект-образец, по образу и подобию которого создаются другие объекты.

Структура данных «класс», представляющая собой объектный тип данных, внешне похожа на типы данных процедурно-ориентированных языков, такие как структура в языке Си или запись в Паскале. При этом элементы такой структуры (члены класса) могут сами быть не только данными, но и методами (то есть процедурами или функциями). Такое объединение называется инкапсуляцией.

Основные принципы объектно-ориентированного программирования. Характеристика абстрактного класса

Язык может называться объектно-ориентированным, если в нем реализованы три концепции: объекты, классы и наследование. Построить объектно-ориентированные системы без инкапсуляции и полиморфизма так же невозможно, как без классов и наследования.

 Инкапсуляция

Инкапсуляция, или утаивание информации — это возможность скрыть внутреннее устройство объекта от его пользователей, предоставив через интерфейс доступ только к тем членам объекта, с которыми клиенту разрешается работать напрямую. Инкапсуляция подразумевает наличие границы между внешним интерфейсом класса (открытыми членами, видимыми пользователям класса) и деталями его внутренней реализации. Преимущество инкапсуляции для разработчика в том, что он может открыть те члены класса, которые будут оставаться статичными, или неизменяемыми, скрыв внутреннюю организацию класса, более динамичную и в большей степени подверженную изменениям. Как уже говорилось, в С# инкапсуляция достигается путем назначения каждому члену класса своего модификатора доступа — public, private или protected.

Абстрагирование

Абстрагирование связано с тем, как данная проблема представлена в пространстве программы. Во-первых, абстрагирование заложено в самих языках программирования.

При объявлении классов в объектно-ориентированных языках вы можете использовать такие имена и интерфейсы, которые отражают смысл и назначение объектов предметной области. "Удаление" элементов, не связанных напрямую с решением задачи, позволит вам полностью сосредоточиться на самой задаче и решить ее более эффективно.

При определении нужной степени абстрагирования класса важно помнить и о программисте клиентского кода. Представьте, что вы пишете основное ядро базы данных. Возможно, вы прекрасно разбираетесь в таких понятиях БД, как курсоры (cursors), управление фиксацией (commitment control) и кортежи (tuples). Однако многие разработчики, не столь искушенные в программировании БД, не собираются вникать в тонкости этих понятий. Используя терминологию, непонятную клиентам вашего класса, вы не достигнете основной цели абстрагирования — повысить эффективность работы программиста путем представления предметной области в понятных ему и естественных терминах.

Кроме того, решая, какие члены класса сделать открытыми, надо опять вспомнить о клиенте. Это еще раз подтверждает необходимость иметь хотя бы начальное представление о предметной области и клиентах вашего класса. Так, в случае с БД ваши клиенты, наверное, не должны иметь прямого доступа к членам, представляющим внутренние буферы данных. Ведь структура этих буферов может когда-нибудь измениться. Кроме того, от целостности этих буферов зависит вся работа ядра БД, и поэтому операции по их изменению следует выполнять только вашими методами. Только после этого можно сказать, что предприняты все меры предосторожности.

Наследование

Наследованием называется возможность порождать один класс от другого с сохранением всех свойств и методов класса-предка (прародителя, иногда его называют суперклассом) и добавляя, при необходимости, новые свойства и методы. Набор классов, связанных отношением наследования, называют иерархией. Наследование призвано отобразить такое свойство реального мира, как иерархичность

Достоинства и недостатки объектно-ориентированного программирования.

ДОСТОИНСТВА ООП

Одной из самых значительных проблем в программировании является сложность. Чем больше и сложнее программа, тем важнее становится разбить ее на небольшие, четко очерченные части. Чтобы побороть сложность, мы должны абстрагироваться от мелких деталей. В этом смысле классы представляют собой весьма удобный инструмент.

Классы позволяют проводить конструирование из полезных компонент, обладающих простыми инструментами, что дает возможность абстрагироваться от деталей реализации.

Данные и операции вместе образуют определенную сущность и они не «размазываются» по всей программе, как это нередко бывает в случае процедурного программирования.

Локализация кода и данных улучшает наглядность и удобство сопровождения программного обеспечения.

Инкапсуляция информации защищает наиболее критичные данные от несанкционированного доступа.

ООП дает возможность создавать расширяемые системы (extensible systems). Это одно из самых значительных достоинств ООП и именно оно отличает данный подход от традиционных методов программирования. Расширяемость (extensibility) означает, что существующую систему можно заставить работать с новыми компонентами, причем без внесения в нее каких-либо изменений. Компоненты могут быть добавлены на этапе выполнения.

Расширение типа (type extension) и вытекающий из него полиморфизм переменных оказываются полезными преимущественно в следующих ситуациях.

Обработка разнородных структур данных. Программы могут работать, не утруждая себя изучением вида объектов. Новые виды могут быть добавлены в любой момент.

Изменение поведения во время выполнения. На этапе выполнения один объект может быть заменен другим. Это может привести к изменению алгоритма, в котором используется данный объект.

Реализация родовых компонент. Алгоритмы можно обобщать до такой степени, что они уже смогут работать более, чем с одним видом объектов.

Доведение полуфабрикатов. Компоненты нет надобности подстраивать под определенное приложение. Их можно сохранять в библиотеке в виде полуфабрикатов (semifinished products) и расширять по мере необходимости до различных законченных продуктов.

Расширение каркаса. Независимые от приложения части предметной области могут быть реализованы в виде каркаса и в дальнейшем расширены за счет добавления частей, специфичных для конкретного приложения.

 

Многоразового использования программного обеспечения на практике добиться не удается из-за того, что существующие компоненты уже не отвечают новым требованиям. ООП помогает этого достичь без нарушения работы уже имеющихся клиентов, что позволяет нам извлечь максимум из многоразового использования компонент.Мы сокращаем время на разработку, которое с выгодой может быть отдано другим проектам. Компоненты многоразового использования обычно содержат гораздо меньше ошибок, чем вновь разработанные, ведь они уже не раз подвергались проверке. Когда некая компонента используется сразу несколькими клиентами, то улучшения, вносимые в ее код, одновременно оказывают свое положительное влияние и на множество работающих с ней программ. Если программа опирается на стандартные компоненты, то ее структура и пользовательский интерфейс становятся более унифицированными, что облегчает ее понимание и упрощает ее использование.

2. НЕДОСТАТКИ ООП

Объектно-ориентированное программирование требует знания четырех вещей.

(1) Необходимо понимать базовые концепции, такие как классы, наследование и динамическое связывание. Для программистов, уже знакомых с понятием модуля и с абстрактными типами данных, это потребует минимальных усилий. Для тех же, кто никогда не использовал инкапсуляцию данных, это может означать изменения мировоззрения и может отнять на изучение значительное количество времени.

(2) Многоразовое использование требует от программиста познакомиться с большими библиотеками классов. А это может оказаться сложнее, чем даже изучение нового языка программирования. Библиотека классов фактически представляет собой виртуальный язык, который может включать в себя сотни типов и тысячи операций. В языке Smalltalk, к примеру, до того, как перейти к практическому программированию, нужно изучить значительную часть его библиотеки классов. А это тоже требует времени.

(3) Проектирование классов — задача куда более сложная, чем их использование. Проектирование класса, как и проектирование языка, требует большого опыта. Это итеративный процесс, где приходится учиться на своих же ошибках.

(4) Очень трудно изучать классы, не имея возможности их «пощупать». Только с приобретением мало-мальского опыта можно уверенно себя почувствовать при работе с использованием ООП.

Как мы видели, усилия на освоение базовых концепций невелики, но вот в случае библиотек классов и их использования они могут быть очень существенными.

Поскольку детали реализации классов обычно неизвестны, то программисту, если он хочет разобраться в том или ином классе, нужно опираться на документацию и на используемые имена. И время, которое было сэкономлено на том, что удалось обойтись без написания собственного класса, должно быть отчасти потрачено (особенно вначале освоения) на то, чтобы разобраться в существующем классе.

Документирование классов — задача более трудная, чем это было в случае процедур и модулей. Поскольку любой метод может быть переопределен, в документации должно говориться не только о том, что делает данный метод, но также и о том, в каком контексте он вызывается. Ведь переопределенные методы обычно вызываются не клиентом, а самим каркасом. Таким образом, программист должен знать, какие условия выполняются, когда вызывается данный метод. Для абстрактных методов, которые пусты, в документации должно даже говориться о том, для каких целей предполагается использовать переопределяемый метод.В сложных иерархиях классов поля и методы обычно наследуются с разных уровней. И не всегда легко определить, какие поля и методы фактически относятся к данному классу. Для получения такой информации нужны специальные инструменты вроде навигаторов классов. Если конкретный класс расширяется, то каждый метод обычно сокращают перед передачей сообщения базовому классу. Реализация операции, таким образом, рассредоточивается по нескольким классам, и чтобы понять, как она работает, нам приходится внимательно просматривать весь код.

Методы, как правило, короче процедур, поскольку они осуществляют только одну операцию над данными. Зато количество методов намного выше. Короткие методы обладают тем преимуществом, что в них легче разбираться, неудобство же их связано с тем, что код для обработки сообщения иногда «размазан» по многим маленьким методам.

Абстракция данных ограничивает гибкость клиентов. Клиенты могут лишь выполнять те операции, которые предоставляет им тот или иной класс. Они уже лишены неограниченного доступа к данным. Причины здесь аналогичны тем, что вызвали к жизни использование высокоуровневых языков программирования, а именно, чтобы избежать непонятных программных структур.

Абстракцией данных не следует злоупотреблять. Чем больше данных скрыто в недрах класса, тем сложнее его расширять. Отправной точкой здесь должно быть не то, что клиентам не разрешается знать о тех или иных данных, а то, что клиентам для работы с классом этих данных знать не требуется.

Часто можно слышать, что ООП является неэффективным. Как же дело обстоит в действительности? Мы должны четко проводить грань между неэффективностью на этапе выполнения, неэффектиностью в смысле распределения памяти и неэффективностью, связанной с излишней универсализацией.

(1) Неэффективность на этапе выполнения. В языках типа Smalltalk сообщения интерпретируются во время выполнения программы путем осуществления поиска их в одной или нескольких таблицах и за счет выбора подходящего метода. Конечно, это медленный процесс. И даже при использовании наилучших методов оптимизации Smalltalk-программы в десять раз медленнее оптимизированных C-программ [Cha92].

В гибридных языках типа Oberon-2, Object Pascal и C++ посылка сообщения приводит лишь к вызову через указатель процедурной переменной. На некоторых машинах сообщения выполняются лишь на 10% медленнее, чем обычные процедурные вызовы. И поскольку сообщения встречаются в программе гораздо реже других операций, их воздействие на время выполнения влияния практически не оказывает.

Однако, существует другой фактор, который затрагивает время выполнения: это абстракция данных. Абстракция запрещает непосредственный доступ к полям класса и требует, чтобы каждая операция над данными выполнялась через методы. Такая схема приводит к необходимости выполнения процедурного вызова при каждом доступе к данным. Однако, когда абстракция используется только там, где она необходима (т.е. не из одной лишь прихоти), то замедление вполне приемлемое.

(2) Неэффективность в смысле распределения памяти. Динамическое связывание и проверка типа на этапе выполнения требуют по ходу работы информации о типе объекта. Такая информация хранится в дескрипторе типа, и он выделяется один на класс. Каждый объект имеет невидимый указатель на дескриптор типа для своего класса. Таким образом, в объектно-ориентированных программах требуемая дополнительная память выражается в одном указателе для объекта и в одном дескрипторе типа для класса.

(3) Излишняя универсальность. Неэффективность может также означать, что программа имеет ненужные возможности. В библиотечном классе часто содержится больше методов, чем это реально необходимо. А поскольку лишние методы не могут быть удалены, то они становятся мертвым грузом. Это не воздействует на время выполнения, но влияет на возрастание размера кода.

Одно из возможных решений — строить базовый класс с минимальным числом методов, а затем уже реализовывать различные расширения этого класса, которые позволят нарастить функциональность

 

 


Дата добавления: 2018-05-12; просмотров: 3923; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!