Линзами называются прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Nbsp;

Глава 4. ЭЛЕКТРОМАГНИТНЫЕ ЯВЛЕНИЯ

Данная глава посвящена различным электромагнитным явлениям. Глава состоит из параграфов и посвящена разбору данных явлений.

Источники света. Распространение света

Свет — это излучение, но лишь та его часть, которая воспринимается глазом. В этой связи свет называют видимым излучением.

Тела, от которых исходит свет, являются источниками света.

 Источники света подразделяются наестественные и искусственные.

Естественные источники света— это Солнце, звёзды, атмосферные разряды, а также светящиеся объекты животного и растительного мира.

Искусственные источники света, в зависимости от того, какой процесс лежит в основе получения излучения, разделяют натепловые и люминесцирующие.

К тепловым относят электрические лампочки, пламя газовой горелки, свечи и др.

Люминесцирующимиисточниками являются люминесцентные и газосветовые лампы

  Все источники света имеют размеры. При изучении световых явлений мы будем пользоваться понятием точечный источник света.

Если размеры светящегося тела намного меньше расстояния, на котором мы оцениваем его действие, то светящееся тело можно считать точечным источником.

Ещё одно понятие, которым мы будем пользоваться в этом разделе, — световой луч.

Световой луч — это линия, вдоль которой распространяется энергия от источника света.

                                               § 64. Видимое движение светил

Солнце и движущиеся вокруг него небесные тела составляют Солнечную систему. Путь, который проходит Солнце за год на фоне звёзд, называют эклиптикой ,а период одного оборота по эклиптике называют звёздным годом. Солнце перемещается по небу, переходя из одного созвездия в другое, и завершает полный оборот в течение года.

Земля является одной из планет Солнечной системы. Она обращается вокруг Солнца по эллиптической орбите и вращается вокруг собственной оси. Движение Земли вокруг Солнца и некоторый наклон земной оси приводят к смене времён года. При движении Земли вокруг Солнца ось Земли остаётся параллельной самой себе.

Луна— спутник Земли, ближайшее к Земле небесное тело. Она вращается вокруг Земли в том же направлении, что и Земля вокруг своей оси, а вместе с Землёй обращается вокруг Солнца.

Все планеты обращаются вокруг Солнца в одном направлении. Планета, двигаясь в том же направлении, что и Солнце и Луна, через некоторое время замедляет свой ход, затем останавливается, смещается в обратном направлении и после очередной остановки снова меняет направление движения на первоначальное.

§ 65. Отражение света. Закон отражения света

Вам уже известно, что свет от источника или от освещенного тела воспринимается человеком, если лучи света попадают в глаза.От источника S направим через щель пучок света на экран. Экран будет освещен, но между источником и экраном мы ничего не увидим (рис. 134, а). Теперь между источником и экраном разместим какой-либо предмет: руку, листок бумаги. В этом случае излучение, достигнув поверхности предмета, отражается, изменяет своё направление и попадает в наши глаза, т. е. он становится виден.

Рис. 134. Падение лучей света на экран

 

Если запылить воздух между экраном и источником света, то становится видимым весь пучок света (рис. 134, б). Пылинки отражают свет и направляют его в глаза наблюдателя.

Это явление часто наблюдается, когда лучи солнца проникают в запылённый воздух комнаты.

Известно, что в солнечный день при помощи зеркала можно получить световой «зайчик» на стене, полу, потолке. Объясняется это тем, что пучок света, падая на зеркало, отражается от него, т. е. изменяет своё направление.

 

 

Световой «зайчик» — это след отражённого пучка света на каком-либо экране. На рисунке 135 показано отражение света от зеркальной поверхности.

Рис. 135. Отражение света от зеркальной поверхности

Линия MN — поверхность раздела двух сред (воздух, зеркало). На эту поверхность из точки S падает пучок света. Его направление задано лучом SO. Направление отражённого пучка показано лучом ОВ. Луч SO — падающий луч, луч ОВ — отражённый луч. Из точки падения луча О проведён перпендикуляр ОС к поверхности MN. Угол SOC, образованный падающим лучом SO и перпендикуляром, называется углом падения (α). Угол СОВ, образованный тем же перпендикуляром ОС и отражённым лучом, называется углом отражения (β).

Таким образом, отражение света происходит по следующему закону:лучи падающий и отражённый лежат в одной плоскости с перпендикуляром, проведённым к границе раздела двух сред в точке падения луча.

Угол падения α равен углу отражения β.

∠ α = ∠ β.

Всякая незеркальная, т. е. шероховатая, негладкая, поверхность рассеивает свет, так как на ней имеются небольшие выступы и углубления.

                                     § 66. Плоское зеркало

Плоским зеркалом называют плоскую поверхность, зеркально отражающую свет. Изображение предмета в плоском зеркале образуется за зеркалом, т. е. там, где предмета нет на самом деле.

Пусть из точечного источника света S падают на зеркало MN расходящиеся лучи SO, SO1, S02 (рис. 139).

 

 

По закону отражения луч SO отражается от зеркала под углом 0°; луч S01 — под углом β1 = α1; луч S02 отражается под углом β2 = α2. В глаз попадает расходящийся пучок света. Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1. В глаз попадает расходящийся пучок света, исходящий как будто бы из точки S1 Эта точка называется мнимым изображением точки S.

Рис. 139. Изображение предмета в плоском зеркале

S1O = OS. Это значит, что изображение предмета находится на таком же расстоянии за зеркалом, на каком предмет расположен перед зеркалом.

          § 67. Преломление света. Закон преломления света

Среда, в которой скорость распространения света меньше, является оптически более плотной средой.

Таким образом, оптическая плотность среды характеризуется различной скоростью распространения света.

Это значит, что скорость распространения света больше в оптически менее плотной среде. Когда световой пучок падает на поверхность, разделяющую две прозрачные среды с разной оптической плотностью, например воздух и воду, то часть света отражается от этой поверхности, а другая часть проникает во вторую среду. При переходе из одной среды в другую луч света изменяет направление на границе сред (рис. 144). Это явление называется преломлением света.

Рис. 144. Преломление света при переходе луча из воздуха в воду

Рассмотрим преломление света подробнее. На рисунке 145 показаны: падающий луч АО, преломлённый луч ОВ и перпендикуляр к поверхности раздела двух сред, проведённый в точку падения О. Угол АОС — угол падения (α), угол DOB — угол преломления (γ).

Луч света при переходе из воздуха в воду меняет своё направление, приближаясь к перпендикуляру CD.

Вода — среда оптически более плотная, чем воздух. Если воду заменить какой-либо иной прозрачной средой, оптически более плотной, чем воздух, то преломлённый луч также будет приближаться к перпендикуляру. Поэтому можно сказать, что если свет идёт из среды оптически менее плотной в более плотную среду, то угол преломления всегда меньше угла падения

γ < α

Луч света, направленный перпендикулярно к границе раздела двух сред, проходит из одной среды в другую без преломления.

При изменении угла падения меняется и угол преломления. Чем больше угол падения, тем больше угол преломления

При этом отношение между углами не сохраняется. Если составить отношение синусов углов падения и преломления, то оно остаётся постоянным.

Для любой пары веществ с различной оптической плотностью можно написать:

где n — постоянная величина, не зависящая от угла падения. Она называется показателем преломления для двух сред. Чем больше показатель преломления, тем сильнее преломляется луч при переходе из одной среды в другую.

 

Таким образом, преломление света происходит по следующему закону: лучи падающий, преломлённый и перпендикуляр, проведённый к границе раздела двух сред в точке падения луча, лежат в одной плоскости.

Отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух сред:

                   § 68. Линзы. Оптическая сила линзы

Линзами называются прозрачные тела, ограниченные с двух сторон сферическими поверхностями.

Линзы бывают двух видов — выпуклые и вогнутые.

Рис. 151. Виды линз:
а — выпуклые; б — вогнутые

Прямая АВ, проходящая через центры С1 и С2 (рис. 152) сферических поверхностей, ограничивающих линзу, называется оптической осью.

Рис. 152. Оптическая ось линзы

Направив на выпуклую линзу пучок лучей, параллельных оптической оси линзы, мы увидим, что после преломления в линзе эти лучи пересекают оптическую ось в одной точке (рис. 153). Эта точка называется фокусом линзы.

 У каждой линзы два фокуса — по одному с каждой стороны линзы.

Рис. 153. Собирающая линза:
а — прохождение лучей через фокус; б — изображение ее на схемах

Расстояние от линзы до её фокуса называется фокусным расстоянием линзы и обозначается буквой F.

Выпуклая линза собирает лучи, идущие от источника. Поэтому выпуклая линза называется собирающей.

 Такую линзу называют рассеивающей.

Рис. 154. Рассеивающая линза:
а — прохождение лучей через фокус; б — изображение её на схемах

Линзы с более выпуклыми поверхностями преломляют лучи сильнее, чем линзы с меньшей кривизной. Если у одной из двух линз фокусное расстояние короче, то она даёт большее увеличение.Оптическая сила такой линзы больше.

Линзы характеризуются величиной, которая называется оптической силой линзы. Оптическая сила обозначается буквой D.

Оптическая сила линзы — это величина, обратная её фокусному расстоянию.

Оптическая сила линзы рассчитывается по формуле

D = 1 / F

 

 

За единицу оптической силы принята диоптрия (дптр).

1 диоптрия — это оптическая сила линзы, фокусное расстояние которой равно 1 м.

                § 69. Изображения, даваемые линзой

С помощью линз можно не только собирать или рассеивать лучи света, но, и получать различные изображения предмета. Если поместить свечу между линзой и её фокусом, то с той же стороны от линзы, где находится свеча, мы увидим увеличенное изображение свечи, её прямое изображение

Если свечу расположить за фокусом линзы, то её изображение пропадёт, но по другую сторону от линзы, далеко от неё, появится новое изображение. Это изображение будет увеличенным и перевёрнутым по отношению к свече. 

Если приближать предмет к линзе, то его перевёрнутое изображение будет удаляться от линзы, а размеры изображения станут увеличиваться. Когда предмет окажется между точками F и 2F, т. е. F < d < 2F, его действительное, увеличенное и перевёрнутое изображение будет находиться за двойным фокусным расстоянием линзы (рис. 159)

2F < f.

Если предмет поместить между фокусом и линзой, т. е. d < F, то его изображение на экране не получится. Посмотрев на свечу через линзу, мы увидим мнимое, прямое и увеличенное изображение.Оно находится между фокусом и двойным фокусом, т.е.

F < f < 2F.

 

Таким образом, размеры и расположение изображения предмета в собирающей линзе зависят от положения предмета относительно линзы.

                                          § 70. Глаз и зрение

Глаз человекаимеет почти шарообразную форму,он защищен плотной оболочкой, называемой склерой. Передняя часть склеры — роговая оболочка 1 прозрачна. За роговой оболочкой (роговицей) расположена радужная оболочка 2, которая у разных людей может иметь разный цвет. Между роговицей и радужной оболочкой находится водянистая жидкость.

Рис. 163. Глаз человека

В радужной оболочке есть отверстие — зрачок 3, диаметр которого в зависимости от освещения может изменяться примерно от 2 до 8 мм. Меняется он потому, что радужная оболочка способна раздвигаться. За зрачком расположено прозрачное тело, по форме похожее на собирающую линзу, — это хрусталик 4, он окружён мышцами 5, прикрепляющими его к склере.

За хрусталиком расположено стекловидное тело 6. Оно прозрачно и заполняет всю остальную часть глаза. Задняя часть склеры — глазное дно — покрыто сетчатой оболочкой 7 (сетчаткой). Сетчатка состоит из тончайших волокон, которые, как ворсинки, устилают глазное дно. Они представляют собой разветвлённые окончания зрительного нерва, чувствительные к свету.

Свет, падающий в глаз, преломляется на передней поверхности глаза, в роговице, хрусталике и стекловидном теле (т. е. в оптической системе глаза), благодаря чему на сетчатке образуется действительное, уменьшенное, перевёрнутое изображение рассматриваемых предметов (рис. 164).

Рис. 164. Формирование изображения на сетчатке глаза

Свет, падая на окончания зрительного нерва, из которых состоит сетчатка, раздражает эти окончания. Раздражения по нервным волокнам передаются в мозг, и человек получает зрительное впечатление, видит предметы. Процесс зрения корректируется мозгом, поэтому предмет мы воспринимаем прямым.

А каким образом создаётся на сетчатке чёткое изображение, когда мы переводим взгляд с удалённого предмета на близкий или наоборот?

В оптической системе глаза в результате его эволюции выработалось замечательное свойство, обеспечивающее получение изображения на сетчатке при разных положениях предмета. Что же это за свойство?

Кривизна хрусталика, а значит, и его оптическая сила могут изменяться. Когда мы смотрим на дальние предметы, то кривизна хрусталика сравнительно невелика, потому что мышцы, окружающие его, расслаблены. При переводе взгляда на близлежащие предметы мышцы сжимают хрусталик, его кривизна, а следовательно, и оптическая сила увеличиваются.


Дата добавления: 2018-05-02; просмотров: 1057; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!