ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИИ ОРГАНОВ ИММУННОЙ СИСТЕМЫ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ “МОСКОВСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ ВЕТЕРИНАРНОЙ МЕДИЦИНЫ И БИОТЕХНОЛОГИИ

ИМЕНИ К. И. СКРЯБИНА”

С.А. ШЕМЯКОВА, М.Ш. АКБАЕВ, Н.В. ЕСАУЛОВА

ИММУНИТЕТ ПРИ ГЕЛЬМИНТОЗАХ ЖИВОТНЫХ

Учебное пособие

Допущено Министерством сельского хозяйства

 Российской Федерации в качестве учебного пособия

для студентов высших учебных заведений,

обучающихся по специальности

310800 - Ветеринария

Москва - 2005

 

 

УДК: 619:616.995.1:612.017.1

 

 

С.А. ШЕМЯКОВА, М.Ш. АКБАЕВ, Н.В. ЕСАУЛОВА. Иммунитет при гельминтозах животных: Учебное пособие. - М.: ФГОУ ВПО МГАВМиБ, 2005, 55 с.

Описана физиология иммунной системы и механизм иммунного ответа при гельминтозах животных.

        

    Предназначена для студентов факультета ветеринарной медицины, слушателей факультета повышения квалификации и специалистов ветеринарного профиля.

Рецензенты: Заслуженный деятель науки РФ, доктор ветеринарных наук, профессор Э.Х. Даугалиева;

Зав. лабораторией иммунологии ВИГИС, доктор ветеринарных наук К.Г. Курочкина;

Зав. кафедрой микробиологии, Заслуженный деятель науки РФ, доктор ветеринарных наук, профессор В.А. Бурлаков.

Утверждено на заседании учебно-методической комиссии ФВМ ФГОУ ВПО «МГАВМиБ им. К.И. Скрябина» от 28 февраля 2005 г., протокол № 5.

ПОНЯТИЕ ОБ ИММУНИТЕТЕ И ИММУННОЙ СИСТЕМЕ

Иммунология как наука возникла во времена Луи Пастера, когда стало известно, что в ответ на внедрение микроорганизмов или их токсинов в организме вырабатываются защитные вещества, получившие название антител. Появилась гу­моральная теория иммунитета, основоположником которой был известный биолог Пауль Эрлих. В те же годы И.И.Мечников обнаружил феномен фагоцитоза (захват и уничтожение чужеродных клеток лейкоцитами) и создал кле­точную (фагоцитарную) теорию иммунитета. Мечников и Эрлих вели между собой ожесточенный спор, но оказалось, что они оба были правы, и в 1908 г. этим ученым была при­суждена Нобелевская премия за разработку клеточно-гуморальной теории иммунитета.

Следует подчеркнуть, что новое осмысление предмета дал в 1957 г. английский исследователь П. Медавар. Он показал, что иммунитет защищает организм не только от микробов, но и от живых клеток из тканей любого другого генетически чужеродного организма, а также доказал иммунологическую «терпимость», если антигены вводят до рождения животного.

Термином «иммунитет», по мнению Р.В.Петрова (1987), обозначают способ защиты организма от живых тел и веществ, несущих на себе признаки генетической чужеродности. В понятие живых тел и веществ, несущих на себе признаки чужеродного генома, могут быть включены бактерии, вирусы, простейшие, гельминты, белки, клетки, ткани, измененные аутоантигены, в том числе и раковые.

В широком понимании иммунитет – это некое защитное биологическое свойство (система защитных реакций) живых многоклеточных организмов против факторов внешней и внутренней среды, нарушающих функциональную целостность организма и его генотип.

Несмотря на то, что как медицинский термин «im-munis» употребляли врачи до нашей эры, принципиально в том же смысле, что и сейчас, в современной иммунологии как науке и медицинской специальности отнюдь нет ясного и общепринятого понимания, что же такое именно иммунитет. Всякое ли защитное биологическое свойство – иммунитет? Есть определенные признаки, по которым иммунитет можно отличить от других защитных свойств того же организма, сосуществующих с иммунитетом и находящихся с ним также в весьма определенных взаимоотношениях. От чего необходимо защищаться многоклеточному организму в целях сохранения своей жизни как целостности? Во-первых, от проникновения во внутреннюю среду травмирующих собственные клетки субстанций из внешней среды. Во-вторых, от внешних веществ, уже проникших во внутреннюю среду. В-третьих, от собственных поврежденных клеток или выполнивших свою биологическую программу клеток.

Существует несколько биологических механизмов защиты многоклеточных организмов от патогенов внешней среды, и лишь один из них является иммунитетом. Поскольку организм – единое целое, разные защитные механизмы взаимосвязаны и дополняют друг друга, но это не значит, что они неотличимы один от другого. Собственно иммунитетом мы будем называть только и исключительно те защитные процессы, которые реализуются с участием лимфоцитов (Р.М.Хаитов, Г.А.Игнатьева, И.Г.Сидорович, 2000). В создании и поддержании иммунитета участвует иммунная система, т.е. совокупность всех лимфоидных органов и скоплений лимфоидных клеток, основная функция которой – обеспечивать генетическое постоянство (гомеостаз) внутренней среды организма, не допуская появления чужеродных или изменившихся собственных клеток. Т.е. распознавание и элиминация из организма собственных, но ненужных клеток (в первую очередь поврежденных инфекцией, травмированных) – некое уникальное самораспознавание и явилось тем новым эволюционным приобретением многоклеточных, которое стало и продолжает быть базисной функцией новой системы клеток многоклеточных – иммунной системы. Для того чтобы распознать в каком месте в организме и в какой момент времени надо «включить» санирующие литические механизмы природа и создала лимфоциты с новой функцией молекулярного распознавания, механизм которого прочно закрепился в эволюции. С лимфоцитами появился новый механизм биологической защиты от поврежденных клеток и от инфекций – иммунитет.

В генетическом аспекте иммунитет рассматривают, как способность организма отличать чужеродный материал от «своего», что жизненно важно. Поступление во внутреннюю среду организма веществ с признаками чужеродной информации грозит нарушением структурного и химического его состава. Количественное и качественное «постоянство» внутренней среды, называемое гомеостазом, обеспечивается процессами саморегулирования во всех живых системах. Иммунитет, по мнению  Я.Е.Колякова (1986), - это одно из проявлений гомеостаза, приспособительный признак организма, проявление естественного и искусственного отбора, результат длительной эволюции, обусловленный изменчивостью, как организма паразита, так и организма хозяина. В этой связи иммунитет является свойством всего живого.

Таким образом, более современное представление об иммунитете сформулировали Р.М.Хаитов, Г.А.Игнатьева, И.Г.Сидорович (2000). Иммунитет – это особое биологическое свойство многоклеточных организмов, в норме предназначенное для защиты от инфекций и иных внешних патогенов, способных при попадании во внутреннюю среду вступать в прочные связи с клетками и/или межклеточным веществом. Носителями этого свойства служат специализированные клетки – лимфоциты. Уникальным и отличительным свойством лимфоцитов как множества клеток является способность распознавать большое множество (~1018) разнообразных и эволюционно незапланированных молекулярных объектов (антигенов). Распознавание есть физическое связывание. После распознавания лимфоцит инициирует и мобилизует как собственные, так и общевоспалительные механизмы деструкции поврежденных патогенном тканей, после чего наступает их элиминация из организма. Таким образом, кратко: Иммунитет = распознавание + деструкция поврежденных тканей.

Иммунитет как процесс и результат реализуется только относительно внутренних свойств организма и свойств антигенов, на которые реагирует иммунная система.

Таким образом, иммунитет защищает организм от 3 внешних типов объектов: от инфекций; от пищевых, ингаляционных и аппликаторных внешних веществ, проникающих во внутреннюю среду; от трансплантанта.

К доиммунным механизмам физиологической резистентности к инфекциям и продуктам повреждения собственных клеток относят биохимические механизмы пищеварительной функции одноклеточных, т.е. ферментативные системы расщепления (протеазы, гидролазы), перекисного окисления, нитрования природных макромолекул до низкомолекулярных продуктов распада, которые клетка способна выбросить через мембрану во внешнюю среду; специализированные для расщипительно-литических процессов клетки (в первую очередь фагоциты, затем и все остальные лейкоциты общевоспалительного назначения), а также особые гуморальные  ферментативные системы литического назначения в сыворотке крови и тканевых жидкостях (комплемент, лизоцим и др.). Литические биохимические механизмы агрессивны по сути. Поэтому в норме они не могут быть в постоянно активном состоянии или даже в близкой готовности к активации, иначе будут лизировать «все подряд». Вот для того, чтобы распознать, в каком месте в организме и в какой момент времени надо «включать» санирующие литические механизмы, природа и создала новые клетки – лимфоциты с новой функцией – молекулярного распознавания. С лимфоцитами появился новый механизм биологической защиты от поврежденных клеток и от инфекций – иммунитет. 

Иммунитет бывает врожденный и приобретенный. Под термином «врожденный иммунитет» понимают то, что мы назвали доиммунными механизмами резистентности, а именно это вполне определенный перечень клеток, молекул и физиологических механизмов (бактерицидные ферменты биологических жидкостей, фагоцитоз, система комплемента и т.п.) (Р.М.Хаитов, Г.А.Игнатьева, И.Г.Сидорович (2000)).

Характерная особенность «приобретенного иммунитета» - его специфичность, то есть устойчивость только к определенным возбудителям. Активный иммунитет возникает в результате непосредственного контакта иммунной системы с возбудителем (антигеном) и собственной его переработки средствами гуморального и клеточного иммунитета (антитела, сенсибилизированные иммунокомпетентные клетки). Вырабатывается он либо после перенесенной инфекции (инвазии), либо в результате вакцинации животных. В обоих случаях в организме образуются антитела против возбудителя и его продуктов метаболизма, а также возникают и дифференцируются иммунокомпетентные клетки (Т- и В-лимфоциты).

Иммунная система имеет три особенности:

1. Она генерализована (рассеяна) по всему организму;

2. Ее клетки постоянно циркулируют благодаря току крови;

3. Она способна продуцировать специфические молекулы - антитела, направленные конкретно против какой-либо мишени.

В организме млекопитающих одновременно существуют древняя неспецифическая система защиты и более совершенная специфическая система, которая базируется на деятельности лимфоидных клеток и конкретно направлена на определенные структуры. Эти две системы очень тесно связаны между собой. В конечном итоге, их деятельность направлена на реализацию одних и тех же целей (П.Е.Игнатов, 1995).

ОСОБЕННОСТИ СТРОЕНИЯ И ФУНКЦИИ ОРГАНОВ ИММУННОЙ СИСТЕМЫ

Органы иммунной системы принято разде­лять на центральные (первичные) и периферические (вторич­ные). К центральным органам относят красный костный мозг, тимус (вилочковую железу), фабрициеву сумку, кото­рая имеется только у птиц, вместо красного костного мозга у млекопитающих и кожу. К периферическим органам при­надлежат лимфатические узлы, миндалины, селезенка, лимфоидные узелки и лимфоидные (пейеровы) бляшки. Органы иммунной системы имеют строго определенную локализацию. Центральные органы располагаются в хорошо защищенных местах. В них образуются исходные стволовые клетки, осуществляются пролиферация и первичная дифференциация иммунокомпетентных (ответственных за иммунитет) клеток — лимфоцитов. Многочисленные периферические органы иммунной системы находятся на путях возможного внедре­ния в организм генетически чужеродных веществ, микробных тел. В них происходит созревание лимфоцитов, их пролифе­рация в ответ на антигенную стимуляцию.

Центральные органы

Красный костный мозг — вещество темно-красного цвета, полужидкой консистенции. Он располагается в ячейках губ­чатого вещества плоских и коротких костей, эпифизов длин­ных (трубчатых) костей. Красный костный мозг является одновремен­но органом кроветворения и органом иммунной системы. В нем содержатся полипотентные стволовые клетки — пред­шественники всех клеток крови и лимфоцитов. Он состоит из миелоидной и лимфоидной тканей. Строму крас­ного костного мозга образует ретикулярная ткань в виде ретикулярных клеток и волокон. В ее петлях располагается миелоидная ткань — молодые и зрелые гемопоэтические эле­менты: эритроциты на различных стадиях зрелости и их предшественники, клетки гранулопоэтического ряда (нейтрофильные, эозинофильные и базофильные лейкоциты), а так­же элементы мегакариобластического ряда, формирующие кровяные пластинки. Кроме того, в костном мозге есть плаз­матические клетки. Между островками клеток гемопоэтического ряда расположены скопления костномозговых лимфоци­тов, концентрирующихся вокруг кровеносных сосудов. Они представлены В-лимфоцитами и предшественниками лимфо­цитов. В костном мозге лимфоциты составляют 3—17% от числа всех ядросодержащих клеток.

Следовательно, костный мозг поставляет полипотентные стволовые клетки для всех видов кроветворения и лимфопоэза. Это неспециализированные клетки, способные к разнообразным дифференциациям и обладающие свойством самоподдержания. Стволовые клетки сохраняются в течение всей жизни (Н. А. Козлов, 1982). Они выходят из костного мозга в кровоток, циркулируют в организме, поступают в вилочковую железу и другие лимфоидные органы, в которых осуществляется их лимфопоэтическая дифференциация, сопровождающаяся размножением и накоплением Т- или В-лимфоцитов.

Вилочковая железа (тимус) располагается позади гру­дины в передней части верхнего средостения. Она состоит из двух вытянутых в длину асимметричных по величине долей - правой и левой, сросшихся или тесно соприкасающихся на уровне их середины. Снаружи тимус по­крыт тонкой соединительнотканной капсулой, от которой внутрь органа отходят перегородки, разделяющие его на дольки. Паренхима тимуса состоит из коркового вещества - темного, расположенного по периферии долек, и мозгового - более светлого, занимающего центральную часть долек. Строма тимуса представлена ретикулярными клетками и волок­нами, а также звездчатой формы эпителиальными клетка­ми — эпителиоретикулоцитами. В петлях этой сети находятся лимфоциты тимуса (тимоциты), небольшое количество плаз­матических клеток, макрофаги, гранулоциты. Клетки, распо­ложенные по периферии коркового вещества, обладают вы­сокой митотической активностью, поэтому его рассматривают как ростковое.

В тимусе из кроветворных стволовых клеток созревают и дифференцируются Т-лимфоциты, ответственные за реакции клеточного и гуморального иммунитета. Стволовые клетки красного костного мозга, пройдя ряд стадий в вилочковой железе, превращаются в Т-лимфоциты, которые заселяют тимусзависимые зоны периферических органов лимфоидной си­стемы. Кроме того эпителиоретикулоциты тимуса, которые представлены в большей степени в мозговом слое, секретируют гуморальные факторы, регулирующие иммунологические процессы — тимозин, Т-активин, тимарин, типомоэтин, тимостимулин, сывороточный и гуморальный тимусные факто­ры. Эпителиальные клетки мозгового слоя местами образуют компактные островки — тельца Гассаля. Афферентные лим­фатические сосуды в органе отсутствуют. Кортикальные лим­фоциты тимуса отличаются незрелостью и прогрессивно диф­ференцируются в зрелые Т-лимфоциты и мигрируют в мозго­вой слой, а оттуда — в кровь.

У млекопитающих и птиц вилочковая железа заклады­вается в период раннего эмбриогенеза. С возрастом она по­степенно атрофируется, обнаруживаются признаки инволю­ции. В тимусе появляются сначала отдельные жировые клетки, а затем разрастается соединительная ткань. В резуль­тате паренхима сохраняется лишь в виде островков (долек), разделенных жировой тканью. Полностью орган никогда не исчезает.

Сумка Фабрициуса у птиц располагается на дорсальной поверхности клоаки, являясь ее дивертикулом. Основным структурным элементом сумки служит лимфоидный узелок с корковой и мозговой зонами. Сумка Фабрициуса развивается между 12-м и 13-м днем эмбрионального перио­да (у кур). Она заполняется группой стволовых клеток крас­ного костного мозга, которые в дальнейшем дифференциру­ются в В-лимфоциты (бурсозависимые) - предшественники плазматических клеток. Инволюция этого органа начинается после 7-й недели жизни цыплят. У млекопитающих аналог сумки Фабрициуса – кроветворный «росток» красного костного мозга.

Периферические органы

Лимфатические узлы расположены на пути следования лимфы по лимфатическим сосудам от органов и тканей к лимфатическим протокам и лимфатическим стволам. Распо­лагаются лимфатические узлы группами, состоящими из двух и более узлов (Аминова Г. Г., 1979). Лимфатические узлы, к которым течет лимфа от органов опорно-двигатель­ного аппарата (подколенные, паховые, локтевые и подмы­шечные) или от стенок тела (межреберные, надчревные), на­зывают соматическими (париетальными). Регионарные лим­фатические узлы, через которые проходит лимфа от внутрен­них органов (бронхолегочные, средостенные, желудочные, брыжеечные, печеночные), называются внутренностными (висцеральными). Узлы, принимающие лимфу одновременно от внутренностей и от мышц, фасций; кожи, называют сме­шанными (подвздошные, поясничные, глубокие латеральные шейные).

Величина и форма лимфатических узлов разнообразны. Они могут быть овальными, округлыми, бобовидными, реже лентовидными и сегментарными и достигают величины 5 см и более. Каждый лимфатический узел покрыт соединительно­тканной капсулой, от которой внутрь узла отходят различной длины пучки соединительной ткани - трабекулы. Капсула и трабекулы состоят из плотной соединительной ткани, в ко­торой расположены коллагеновые, эластические и ретикуляр­ные волокна, а также гладкомышечные клетки. Внутри лим­фатического узла между трабекулами находится строма, образованная ретикулярными волокнами и клетками. В пет­лях ретикулярной стромы располагаются клеточные элемен­ты лимфоидной ткани.

Паренхима лимфатического узла состоит из коркового и мозгового вещества. Корковое вещество распо­лагается по периферии узла, имеет более темную окраску и образовано плотными скоплениями лимфоцитов округлой формы — лимфоидными узелками. В них находятся главным образом В-лимфоциты. Различают лимфоидные узелки с цен­тром размножения и без него. В узелках без центра размно­жения клетки располагаются плотно и относительно равно­мерно. В лимфоидных узелках с центром размножения пери­ферическая часть узелка состоит из плотно лежащих малых и средних лимфоцитов. Центры узелков являются одним из мест размножения лимфоцитов и содержат в большом коли­честве лимфобласты и большие лимфоциты, митотически де­лящиеся клетки. Вокруг лимфоидных узелков располагается диффузная лимфоидная ткань.

С внутренней стороны узелков, непосредственно на гра­нице с мозговым веществом, находится участок лимфоидной ткани, получивший название тимусзависимой паракортикальной зоны, содержащей преимущественно Т-лимфоциты. Ха­рактерной особенностью этой части коркового вещества яв­ляется наличие в ней посткапиллярных венул, стенки кото­рых выстланы кубическим эндотелием, через который мигри­руют лимфоциты. Более светлое мозговое вещество занимает центральную часть лимфатического узла. Паренхима мозго­вого вещества представлена скоплениями лимфоидной ткани, главным образом В-лимфоцитами. Здесь же находятся плаз­матические клетки и макрофаги.

К каждому лимфатическому узлу, к его выпуклой сторо­не, подходят 4—6 лимфатических сосудов и более, которые впадают в подкапсульный (краевой) синус, расположенный между капсулой и паренхимой. От подкапсульного синуса в паренхиму узла, вдоль трабекул, уходят промежуточные си­нусы коркового и мозгового веществ. Они впадают в ворот­ный синус, из которого берут начало выносящие лимфатиче­ские сосуды. В том месте, где из лимфатического узла вы­ходят выносящие лимфатические сосуды, имеется вдавлива­ние - ворота. Через них в лимфатический узел входят ар­терии, нервы, а выходят вены.

Стенки синусов лимфатических узлов построены таким образом, что через них могут легко проникнуть из коркового и мозгового вещества в лимфу и в обратном направлении лимфоциты, макрофаги и другие активно передвигающиеся клетки. В синусах могут задерживаться поступающие в лим­фатический узел вместе с лимфой инородные частицы, мик­робы, опухолевые клетки. С возрастом лимфатические узлы подвергаются инволюции. В них увеличивается количество соединительной ткани, утолщаются капсула и трабекулы, по­являются группы жировых клеток.

Миндалины, образующие глоточное лимфоидное кольцо, расположены у самого входа в глотку. Две небные и языч­ная миндалины охватывают с боков и снизу зев, через кото­рый пища из полости рта проходит в глотку. Глоточная идве трубочные миндалины занимают свод глотки и ее боко­вые отделы (около глоточных отверстий слуховых труб) и находятся на пути воздушной струи из полости носа через хоаны в носоглотку. Паренхима миндалин образована диф­фузной лимфоидной тканью, состоящей из ретикулярных кле­ток и волокон, в петлях которых располагаются малые, сред­ние и большие лимфоциты, макрофаги, плазматические клет­ки и др. В толще миндалин находятся плотные округлой формы скопления лимфоидной ткани — лимфоидные узелки. Они могут быть двух типов, с центром размножения и без него. В лимфоидных узелках без центра размножения лимфоидная ткань созревает, приходит в состояние функцио­нальной зрелости и активности для встречи с чужеродными агентами. В некоторых лимфоидных узелках, по мере их раз­вития, появляются центры размножения. В них много митотически делящихся клеток лимфоидного ряда, молодых лим­фоцитов, а также незрелых плазматических клеток, макрофагов. Центры размножения таких узелков выделяются на гистологических срезах более светлой окраской. Узелки име­ют периферическую (краевую) зону - мантию, которая состоит из плотно расположенных клеток, преимущественно малых и средних лимфоцитов, которые лежат в несколько слоев в виде тонкого ободка вокруг центра размножения. Диффузная лимфоидная ткань располагается между узелка­ми в виде тяжей. С возрастом происходят инволюция лим­фоидной ткани миндалин, разрастание в них соединительной ткани и уменьшение количества лимфоидных узелков.

Пейеровы бляшки представляют собой скопление лимфо­идных узелков, плотно прилегающих друг к другу, и диф­фузной лимфоидной ткани в слизистой оболочке подвздош­ной, тощей и двенадцатиперстной кишок. Пейеровы (лимфоидиые) бляшки со стороны просвета кишки имеют вид слабо выраженных возвышений, преимущественно округлой или овальной формы, различных размеров. Поверхность слизис­той над лимфоидной бляшкой слегка бугристая и немного приподнятая. Бляшкой считается скопление пяти лимфоид­ных узелков и более (В. В. Виноградов, 1987). Располага­ются бляшки обычно на стороне, противоположной брыже­ечному краю кишки. Предполагают, что пейеровы бляшки у млекопитающих являются эквивалентом фабрициевой сумки, в них поселяются стволовые клетки и дифференцируются В-лимфоциты.

Большое количество лимфоидных узелков имеет червеоб­разный отросток слепой кишки. Они расположены на всем протяжении этого органа в слизистой оболочке и в подслизистой основе. Узелки расположены довольно густо, нередко друг над другом в 2—3 ряда. Залегают лимфоидные узелки на различной глубине: одни из них своей вершиной приле­гают непосредственно к эпителию червеобразного отростка, другие - находятся глубоко в подслизистой основе органа. Лимфоидная ткань узелков состоит из ретикулярных волокон и клеток, а также расположенных в образованных ими пет­лях клеток лимфоидного ряда - малых, средних и больших лимфоцитов, бластов, Т- и В-лимфоцитов, макрофагов. С возрастом количество лимфоидной ткани и лимфоидных узелков уменьшается, что является признаком инволюции иммунокомпентентных образований. Количество соедини­тельной ткани в стенке органа увеличивается.

Многочисленные одиночные лимфоидные узелки и скоп­ления диффузной лимфоидной ткани находятся в толще сли­зистой оболочки органов пищеварения (глотки, пищевода, желудка, желчного пузыря), органов дыхания (гортани, тра­хеи, бронхах), мочевыводящих путей (мочеточников, мочевого пузыря и мочеиспускательного канала). Лимфоидные узелки лежат на близком друг от друга расстоянии и выполняют роль сторожевых постов на пути возможного внедрения чужеродных веществ из полости этих органов в их стенки.

Селезенка относится к периферическим органам иммун­ной системы, и только она способна отвечать иммунологиче­ской реакцией на антигены, содержащиеся в крови. Распола­гается селезенка в брюшной полости, в левом подреберье, имеет форму уплощенной и удлиненной полусферы с заостренными концами, фиброзную капсулу, от которой внутрь органа отходят соединительнотканные перекладины (трабекулы), содержащие коллагеновые, ретикулярные и эластиче­ские волокна, а также гладкомышечные клетки. Соедини­тельнотканный остов селезенки составляет также ретикуляр­ная ткань, в петлях которой расположены клетки, образую­щие паренхиму селезенки — ее пульпу. Различают лимфоидную белую пульпу и эритроидную красную пульпу. Белая пульпа по структуре и функции аналогична корковому слою лимфатического узла. Красная пульпа участвует в очистке организма от старых эритроцитов и в то же время является резервным органом кроветворения.

Лимфоидные узелки селезенки имеют округлую форму и окружают центральные артерии, от которых в узелки отхо­дят капилляры. Периартериальная часть лимфоидных узел­ков рассматривается как тимусзависимая зона, содержащая Т-лимфоциты, которые поступают сюда через стенки крове­носных капилляров из тимуса. В центрах размножения лимфоидных узелков обнаруживаются В-лимфоциты и их пред­шественники, макрофаги. Периферия лимфоидных узелков находится на границе с красной пульпой и содержит Т-, В-лимфоциты и макрофаги.

В петлях ретикулярной ткани красной пульпы расположе­ны лимфоциты, зернистые и незернистые лейкоциты, макро­фаги, эритроциты и другие клетки. Образованные этими клетками пульпарные тяжи залегают между венозными сину­сами. Относительное количество красной пульпы в течение жиз­ни организма не изменяется, количество лимфоидных узел­ков и объем белой пульпы с возрастом уменьшаются.

Вся артериальная кровь внутри селезенки обязательно проходит по мелким артериальным сосудам (центральным артериям) через лимфоидные влагалища и лимфоидные узел­ки, где осуществляется иммунный контроль крови.

ФИЗИОЛОГИЯ ИММУННОГО ОТВЕТА

С.Н.Румянцев (1984) пишет, что у позвоночных три системы иммуногенеза: конституциональная, фагоцитарная и лимфоидная.

В.Д.Тимаков (1974) резюмировал, что конституциональный иммунитет, защищающий от микроскопических агрессоров не только позвоночных, но и представителей всех других форм живой материи, наследственно закрепленный в ряде поколений, обладает высокой устойчивостью.

Иммунная система у позвоночных имеет двойственный характер, так как может формировать два способа защиты от чужеродного вторжения. Клеточный иммунный ответ пре­обладает и наиболее эффективен при попадании в организм грибов, простейших организмов, чужеродных тканей и рако­вых клеток. Гуморальный иммунный ответ проявляется преимущественно в период внеклеточной фазы бактериальных и вирусных инфекций. Универсальный характер иммунной сис­темы обусловлен существованием в организме двух популя­ций морфологически однородных лимфоидных клеток, назы­ваемых лимфоцитами: Т-клетки обеспечивают клеточный им­мунный ответ, В-клетки - гуморальный иммунный ответ.

У млекопитающих первичные лимфоциты-предшественни­ки возникают в кровяных островках желточного мешка и мигрируют сначала в печень, а затем в костный мозг. На протяжении всей жизни организма в костном мозге образу­ются столовые кроветворные (гемопоэтические) клетки, по­томки которых превращаются в предшественники лимфоци­тов. При созревании из них образуются иммунокомпетентные Т- или В-клетки. Поэтому лимфопоэз следует рассматри­вать как дифференцировку лимфоцитов от стволовой клетки до зрелого неимунного лимфоцита, как всю совокупность явлений, происходящих в цент­ральных и периферических органах лимфоидной системы. Он включает две фазы — антигеннезависимую и антигензависимую. Дифференциация лимфоцитов, происходящая в тимусе, костном мозге, а у птиц — в фабрициевой сумке, приводит к возникновению иммунокомпентентных клеток, т. е. клеток, имеющих ассоциированные с клеточной поверхностью антигенспецифические рецепторы и клеточные механизмы для от­вета на антигенную стимуляцию. Такие клетки называются незрелыми лимфоцитами. Их образование не связано с воз­действием антигена. Дифференциация, обусловленная анти­геном, в конечном итоге приводит к появлению клеток «па­мяти» и эффекторных клеток (антигензависимая фаза созре­вания). Тип лимфоидных клеток, дифференцирующихся на первом этапе под влиянием тимуса, получил название тимусзависимых лимфоцитов, или Т-лимфоцитов. Из крови клетки-предшественники проникают в ткани тимуса, где при­обретают поверхностные антигенные рецепторы и становятся способными заселять специальные Т-клеточные области пе­риферических лимфоидных органов - тимусзависимые зоны. Это паракортикальные участки лимфатических узлов, периартериальные влагалища в селезенке, диффузная лимфоидная ткань слизистых оболочек пищеварительного тракта (Н. А. Козлов, 1982). После миграции на периферию незре­лые Т-клетки могут отвечать на стимуляцию антигеном про­лиферацией, а затем дифференциацией в Т-клетки «памяти» и эффекторные Т-клетки. Различают эффекторные клетки нескольких типов, харак­теризующиеся разными функциями: Т-киллеры (цитотоксические клетки), которые убивают чужеродные клетки; Тh- хелперы, ответственные за процессы дифференциации и пролиферации В-клеток, синтез антител и активацию макрофагов; ТA-амплифайеры, которые усиливают дифференциацию и пролиферацию Т-киллеров; Ts-супрессоры, которые от­вечают за супрессию иммунного ответа; ТD-клетки, способ­ные вырабатывать медиаторы повышенной чувствительности замедленного типа - лимфокины и ответственные за гипер­чувствительность замедленного типа к антигенным субстан­циям. Имеются данные, что они осуществляют противо­раковую защиту, а также повышают резистентность против некоторых бактериальных инфекций, связанных с внутри­клеточным паразитированием возбудителя, и противовирус­ный иммунитет. Описана для Т-лимфоцитов субпопуляция, имеющая активные рецепторы к эритроцитам барана и для С3 компонента комплемента. Они получили название Д-лимфоциты (двойные). Т-помощники и Т-супрессоры являются глав­ными регуляторными клетками при иммунном ответе.

Второй тип лимфоидных клеток называют В-лимфоцитами, которые предназначены для реализации гуморального иммунного ответа с образованием специфических антител. Созревание В-клеток также включает в себя антигеннезависимую фазу, во время которой В-клетки при­обретают свойство заселять специфичные для них зоны в пе­риферических органах лимфоидной системы и свойство кле­точного распознавания. У них появляются ассоциированные с клеточной поверхностью антигенспецифичные рецепторы. В-зоны или тимуснезависимые области в пейеровых бляш­ках, миндалинах представлены лимфоидными узелками, в лимфатических узлах и селезенке — лимфоидными узелками и медуллярными тяжами. В этих зонах В-клетки могут от­вечать на антигенную стимуляцию пролиферацией, а затем дифференциацией в В-клетки «памяти» и секретирующие ан­титела плазматические клетки (антигензависимая фаза).

Существует популяция лимфоцитов, не имеющая ни Т-, ни В-маркеров — нуль-лимфоциты. В норме они составляют 2—15% всех лимфоцитов. Среди них выявлены L- и К-лимфоциты, NK-клетки (естественные киллеры). L- и К-лимфоциты способны осуществлять антителозависимый, не требую­щий присутствия комплемента лизис клеток-мишеней. NK-клетки в настоящее время рассматриваются как главные клетки, осуществляющие противоопухолевую защиту.

Все лимфоциты взаимодействуют с антигеном и друг с другом с помощью рецепторов, которые неодинаковы у раз­ных типов лимфоцитов. Функцию рецепторов выполняют ан­титела или антителоподобные молекулы, связанные с мембра­ной лимфоцитов. Присоединение антигена к рецептору В-клетки индуцирует гуморальный иммунный ответ; связыва­ние антигена с Т-клетками приводит к развитию клеточного иммунного ответа (И.Л.Вейсман, Л.Е.Худ, У.Б.Вуд, 1983). В настоящее время общепризнано существование на Т-лимфоцитах рецепторов двух типов - для распознавания чужеродных и своих антигенов.

Большая роль в иммунном ответе принадлежит также си­стеме макрофагов. Она включает моноциты крови и ткане­вые макрофаги. Они являются доминирующими клетками мононуклиарной фагоцитарной системы и обнаруживаются в крови, соединительной ткани, костном мозге, печени, лег­ких, нервной системе, в брюшной, плевральной и суставных полостях (Р.В.Петров, 1987). К тканевым макрофагам от­носятся макрофаги кроветворных органов, гистиоциты соединительной ткани, альвеолярные макрофаги, клетки Купфера в печени и другие. Макрофаги возникают из стволовой кро­ветворной клетки в костном мозге. Развитие их проходит ряд стадий: монобласт - промоноцит - моноцит - макро­фаг. Формирование органо- и тканевоспецифических макро­фагов зависит от тканевого окружения, в которое они попа­дают. Тканевые макрофаги постоянно пополняются моноци­тами из крови. Популяция мононуклеарных фагоцитов гетерогенна по морфологическим, биохимическим и иммунологическим свойствам. В структуре макрофагов большой объем занимает цитоплазма, что позволяет им перерабатывать час­тицы значительного размера. Макрофаги образуют псевдо­подии и содержат большое количество разнообразных фер­ментов, гидролизирующих белки, углеводы, липиды и нуклеиновые кислоты. Эти ферменты находятся в лизосомах. Сли­яние лизосом с фагосомами (пузырьки, окруженные мембраной, внутри которых находится чужеродная частица) при­водит к образованию фаголизосомы и к перевариванию и разрушению фагоцитированной частицы.

Нейтрофилы происходят также из стволовых кроветворных клеток, на их мембране находятся рецепторы для Fs-фрагментов иммуноглобулинов, в том числе и для агрегированного IgG и иммунных комплексов (продукт взаимодействия антител с соответствующим антигеном); С3-компонентов комплемента, гистамина, эритроцитов барана и др. Нейтрофилы не делятся и имеют набор биологически активных веществ, находящихся в гранулах.

Основная функция нейтрофилов - фагоцитоз, но они принимают участие в специфическом звене киллерного эффекта и осуществляют антителозависимую цитотоксичность, получая с помощью антител сигнал от лимфоцитов.

Эозинофилы, базофилы и тучные клетки находятся в крови, рыхлой соединительной ткани и происходят из костного мозга. Эозинофилы принимают активное участие в реализации как клеточного, так и гуморального иммунного процесса, имея рецепторы к иммуноглобулинам различных классов и компонентам комплемента, им свойственен фагоцитоз. Базофилы имеют рецепторы к иммуноглобулинам IgG и IgЕ, принимают активное участие в межклеточных взаимодействиях. Но основная функция этих форменных элементов – участие в развитии противопаразитарного иммунитета (Э.Х.Даугалиева, В.В.Филиппов, 1991).

ИММУННЫЙ ОТВЕТ ОРГАНИЗМА

Эпоха изучения механизмов иммунного ответа ознаменована бур­ным темпом развития понимания природы индукции и регуляции в им­мунных реакциях. Доказано, что для развития и регулирования иммунного ответа необходимо сотрудничество нескольких типов иммунокомпетентных клеток. Они способны в совокупности перерабатывать и распознавать антиген, взаимодействовать между собой, дифференцироваться под действием антигена и выполнять эффекторные функции. На огромном экспериментальном материале, полученном методом культивирования клеток в системе ин виво и ин витро показано, что иммунный ответ против большинства природных и синте­тических антигенов реализуется при активном взаимодействии различ­ных классов и субклассов Т- и В-лимфоцитов (Петров Р.В., Манько В.М., 1989). Однако лимфоидные клетки могут взаимодействовать с чужеродными агентами и отвечать на них лишь в специализированных органах иммунной системы, в которые они попадают с током крови и лимфы. Лимфатическая система при этом выполняют три важнейшие функции: концентрирует антигены из всего организма в нескольких лимфоидных органах; пропускает всю популяцию лимфоцитов через эти органы, благодаря чему в короткий период времени каждый антиген предстает перед всем набором существующих в организме антигенспецифичных лимфоцитов; переносит продукты иммунного ответа, антигенспецифичные Т-клетки и антитела в кровоток и ткани. Попавшие в интерстициальные пространства тканей антигены с током лимфы приносятся в лимфоидные органы – регионарные лимфоузлы, миндалины, пейеровы бляшки. Антигены, проникшие в кровь, захватываются макрофагами селезенки, печени и легких. Однако иммунологические реакции проявляются только в селезенке.

Иммунная система распознает особенности поверхности макромолекул, не являющихся нормальными составными частями данного организма и обладает способностью синтезировать около 105-108 различных молекул антител, которые в совокупности могут распознать практически любое число антигенов. Это специфическое распознава­ние осуществляют, с одной стороны, сывороточные белки — антитела, а с другой — подобные им молекулы, находящиеся на поверхности Т-лимфоцитов. Распознаваемые ими чуже­родные агенты называются антигенами. Они несут признаки чужеродной генетической информации. Антиген, вызывающий ответ иммунной системы, называется иммуногеном. Эффек­тивными иммуногенами можно считать такие макромолеку­лы, как чужеродные белки, нуклеиновые кислоты, полисаха­риды, полипептиды, липополисахариды, искусственные полимеры. Молекулы с молекулярной массой менее 5000, как правило, неиммуногенны. Однако множество неиммуногенных молекул, называемых гаптенами, могут стимулировать иммунный ответ, но только в том случае, если они соедине­ны с большой молекулой-носителем (белком). Гаптен адсор­бируется белком и обладает уже свойствами иммуногена. Это комплексное соединение называется конъюгированным антигеном. Часть антигена, с которой связывается антитело, называется антигенной детерминантой.

Последовательность явлений, происходящих при гуморальном иммунном ответе следующая. На попавший в организм антиген сначала реагируют макрофаги. На поверхности макрофагов имеются различные рецепторы: для комплемента, лимфокинов, хемотаксических факторов, фибрина, ксеногенных эри­троцитов, а также для F-константных фрагментов некоторых иммуноглобулинов. Эти рецепторы обеспечивают прилипание и фагоцитоз различных чужеродных частиц и бактерий, который является наиболее древним и мощным механизмом как наследственного, так и приобретенного иммунитета. Среди клеток, обладающих способностью фагоцитировать различают микрофаги (нейтрофилы, базофилы, эозинофилы), которые первыми появляются в очаге воспаления, и макрофаги (звездчатые эндотелиоциты печени, селезенки, лимфатических узлов, тимуса, гистио­циты соединительной ткани) ( Петров Р.В.,1968, Брондз Б.Д.,1977).

Микрофаги ведут свое происхождение от клеток соединительной ткани, которые циркулируют в крови 6-7 часов, в очаге воспаления до 5 суток. Жиз­неспособность макрофагов значительно дольше, в кровяном русле - до 3 суток, а в очаге воспаления до нескольких суток. Макрофаги участвуют в распозна­вании антигена, они фагоцити­руют в основном бактерии, а могут захватывать и переваривать грибы, простейшие, вирусы, гельминты и, что особенно важно, участвуют в образовании иммунных антител. Фагоцитоз осуществляется в несколько стадий: соединение фаго­цита с микробом, погружение последнего вместе с участком клеточной стенки внутрь фагоцита и его переваривание в лизосомах (Анфалова Т.В., Галактионов В.Г., 1977). Как известно, фагоцитоз активируется под дей­ствием нормальных и иммунных антител, а также ряда фармакологически активных веществ –  лимфокинов, выделяемых сенсибилизированными к ан­тигену лимфоцитами тимуса (Т-лимфоцитами). Подвижные и фиксированные фагоциты, очищая кровь, лимфу, ткани и органы от микро­бов и их токсинов, составляют основу клеточного иммунитета, прини­мая участие в процессе образования иммунных антител, с которыми связано формирование приобретенного специфического иммунитета.

Все эти клетки формируются из гемопоэтических стволовых клеток. Стало известно, что все иммунокомпетентные клетки возникают из недифференцированных кровеносных стволовых клеток, через стадию престволовых элементов соответствующей ориентации. Костный мозг слу­жит источником стволовых клеток, как для кровеносных, так и для лимфоидных элементов. Исследованиями последних лет доказано, что формирование спе­цифических защитных реакций не является единственной функцией лимфоцитов. Взаимодействуя со стволовыми клетками, лимфоциты обеспечивают также регуляцию кроветворения. С другой стороны поддержание пула лимфоидных клеток достигается за счет функционирования кроветворной клеточной системы, центральной фигурой которой является полипотентная стволовая клетка.

Общие введения о том, что для индукции любого иммунного ответа различные иммунокомпетентные клетки могут взаимодействовать друг с другом, были многократно подтверждены, вошли в учебники и руковод­ства по иммунологии. В специфическом иммунном ответе на белки и дру­гие Т-зависимые антигены макрофаги представляют антиген Т- и В-лимфоцитам, а Т-лимфоциты оказывают В-лимфоцитам «помощь» при размно­жении и дифференцировке, происходящей под влиянием того же антигена. В процессе активации специфического к антигену клона Т-лимфоцитов участвуют вспомогательные субпопуляции тех же клеток – происходит Т – Т взаимодействие. Т-супрессоры, а также макрофаги с супрессорными свойствами регулируют активацию, замедляя размножение клеток, которые подвергались воздействию антигена или поликлонального акти­ватора. К настоящему времени получены уточняющие данные о характере и факторах взаимодействия, происходящего при активации клеток, об их субпопуляционной принадлежности.

Макрофаги и Т-лимфоциты. Участие макрофагов в презентации антигена Т-лимфоцитами зависит от двух различных процессов. Присутствие макро­фагов необходимо для индукции пролиферации Т-лимфоцитов антигенами или митогенами. Важность образования интерлейкина-1 макрофагами для активации Т-лимфоцитов необходимо для обеспечения прочного контакта взаимодействующих клеток. Т-лимфоциты и макрофаги взаимно подталкивают друг друга к состоянию активации и не так легко выявить, какая из клеток совершает первый «толчок» во взаимодейст­вии макрофагов и Т-лимфоцитов. Здесь имеются интересные популяционные аспек­ты. С одной стороны не все лимфоциты в равной степени зависимы от макрофагов. Это было показано в опытах активации с помощью ФГА лимфо­цитов крови, разделенных в градиенте плотности. Лимфоциты высокой плот­ности не могли отвечать на ФГА в отсутствии моноцитов. Однако более крупные моноциты с плавучей плотностью 1,064-1,062 все же размножа­лись под влиянием ФГА. С другой стороны, определенная субпопуляция макрофагов может оказывать супрессивное действие на активированные лим­фоциты. Это было показано на примере взаимодействия с макрофагами лим­фоцитов, полученных в процессе иммунизации конъюгатом носитель-гаптен, но специфичных не к носителю, а к гaптену. Данный механизм может вести к ограничению иммунологического процесса, его регулированию (Klaus G.G., 1985). Таким образом, можно влиять на функции Т-лимфоцитов, изменяя популяции макрофагов.

Взаимодействие между Т-лимфоцитами. Взаимодействие между различными субпопуляциями Т-лимфоцитов было впервые отмечено при изучении становления клеточного иммунитета. (Петров Р.В., 1976). Клетки, способствующие накоплению Т-лимфоцитов с эффекторной функцией, были обозначены как лимфоциты хелперы, а тормозящие развитие иммунологического ответа на эритроциты барана – Т-супрессоры. Индустрия накопления Т-супрессоров также требует взаимодействия различных субпопуляций Т-лимфоцитов (Webb D.R., 1983).

 Т-_и_В-лимфоциты. Наиболее изученным видом Т-В-взаимодействия является «помощь», которую оказывают Т-хелперы иммунизированных жи­вотных. Эта помощь необходима для успешного размножения В-лимфоцитов, активируемых Т-зависимым антигеном, и их последующей дифференцировки в АОК. Накоплено немало сведений о том, что Т-хелперы и В-лимфоциты обычно распознают различные детерминанты одной и той же антигенной молекулы. Установлено, что «помощь» в активации специфических антителообразующих клеток может быть оказана не только хелперами, но и Т-замещающим фактором. Активированные Т-лимфоциты специфического клона способны образовать также неспецифический, поликлональный Т-замещающий фактор, обеспечи­вающий поликлональное размножение В-лимфоцитов (Webb D.R., 1983).

Непременным спутником любого вида активации в смешанной популяции лимфоцитов являются Т-супрессоры. Интерес исследователей привлечен к факторам, способным заменить специфические Т-супрессоры, которые были обнаружены в культуральной жидкости соответствующих линий Т-лимфоцитов. В нем была обнаружена идиотипическая детерминанта, соответствующая специфичности супрессии. Благодаря способности распознавать некоторые антигены собственных клеток Т-лимфоциты могут регулировать и такие физиологические процессы, как пролиферация и дифференцировка крове­творных клеток, ход которых также изменяется в условиях активации иммунной системы (Петров Р.В., Манько В.М.,1989).

Макрофаги и В-лимфоциты. Макрофаги представляют антиген на своей поверхности не только Т-, но и В-лимфоцитам, а также регулиру­ют ход иммунного ответа, выделяя ряд медиаторов, простогландины, не­которые ферменты, супероксидазные анионы. Сравнительно мало изучен вопрос о роли макрофагов в развитии иммунного ответа на Т-независимые антигены, а также на размножение В-лимфоцитов под влиянием соответствующих митогенов. Есть работы, свидетельствующие об участии макрофагов в активации В-лимфоцитов. Уста­новлено, что макрофаги, хотя и неабсолютно необходимы, но весьма важны в системе клеток, осуществляющих иммунный ответ на Т-независимый антиген. Механизм вспомогательного действия макрофагов при активации В-лимфоцитов антигенами или митогенами не вполне изучен. По-видимому, большую роль в этом случае играют медиаторы, образуемые макрофагами, в первую очередь интерлейкин-1, который может быть комитогенным фактором для В-лимфоцитов. Активированные макрофаги яв­ляются индуктором и регулятором активации В-лимфоцитов (Phipps R., Scott D., 1983).

В-лимфоциты, несущие на поверхности чужеродный антиген, способ­ны стимулировать размножение сенсибилизированных Т-лимфоцитов. Таким образом, В-лимфоциты служат антигенпрезинтирующими клетками вместо макрофагов. Это наблюдение принципиально важно в том отношении, что заставляет предполагать возможность распознавания в В-лимфоцитах «непроцессированного» антигена Т-лимфоцитами. В связи с этим было высказано предполо­жение об альтернативных возможностях начала иммунного процесса с учас­тием макрофагов в случае корпускулярного антигена и с участием В-лимфоцитов в случае антигена растворимого.

Таким образом, общая картина взаимодействия клеток в процессе активации является очень сложной. Т- и В-лимфоциты, моноциты, макрофа­ги оказались способны взаимно обеспечить активацию, супрессию, толе­рантность или «модуляцию» функций в иммунологическом процессе.

Образование антител есть результат межклеточных взаимодейст­вий, возникающих под влиянием иммунного стимула. В нем принимают участие Т- и В- лимфоциты (Петров Р.В., 1976, 1983), последние спо­собны как усиливать, так и подавлять иммунный ответ. Установлено, что предшественниками клеток с высоким уровнем секреции антител являются В-лимфоциты. Т-лимфоциты никогда не превращается в клетки, секретирующие иммуноглобулины.

В процессе иммунного ответа появляются антитела, кото­рые образуются плазматическими клетками и принадлежат к классу белков-иммуноглобулинов. Молекула антитела вы­полняет две функции: распознавание антигена и его элими­нацию. Антитела могут взаимодействовать с любым числом антигенов, однако элиминация осуществляется не всегда. Функциональная двойственность молекулы антитела отража­ется на ее пространственной структуре. Основной структур­ной единицей иммуноглобулинов является четырехцепочный полипептидный комплекс. В связи с особенностями строения константных участков сывороточные иммуноглобулины мле­копитающих подразделяют на пять классов IgM, IgG, IgA, IgD, IgE, которые соответствуют антителам с разными эффекторными функциями.

IgM - первые антитела, образующиеся в ответ на иммуноген. Они находятся главным образом в крови и очень мед­ленно проникают в интерстициальную жидкость, но не про­ходят через плаценту к плоду. Эти иммуноглобулины осо­бенно эффективны против микроорганизмов. IgG содержат­ся в крови и межтканевых пространствах. Это единственный класс иммуноглобулинов, способных проникать через пла­центу и обеспечивать иммунную защиту развивающегося плода. IgG активируют систему комплемента, ускоряют пе­реваривание чужеродных частиц макрофагами. IgA создают барьер против антигенов в местах их наиболее вероятного проникновения: в желудочно-кишечном тракте, молочной же­лезе. IgA - основной иммуноглобулин молока и молозива, обнаружен также в слюне, слезах и поте. IgD обычно нахо­дится в крови и присутствует на поверхности большинства циркулирующих лимфоцитов в качестве рецепторов. IgE на­ходятся в крови. Они прочно связываются с тучными клетка­ми соединительной ткани и базофилами крови, которые в свою очередь высвобождают гистамин и гепарин. Это приво­дит к местному расширению сосудов и сокращению гладкой мускулатуры некоторых органов А.Н.Голиков, В.Д.Фомина, 1995).

Они связывают и частично разрушают анти­ген и в высокоиммуногенной форме представляют его Тh-хелперам. Кроме того, макрофаги передают от Т-лимфоцитов специфический сиг­нал включения В-лимфоцитам на этапе их взаимодействия при иммунном ответе. Одновременно на В-лимфоциты действуют Т-супрессоры с помощью индуктора иммунопоэза. Макрофаг присоединяется к В-лимфоциту гаптеновыми участками антигена. Такой активированный В-лимфоцит, размножаясь, првращается в плазматические клетки, которые вырабатывают иммуноглобулины. Антитела обезвреживают антиген, а Т-супрессоры обеспечивают появление такого количества антител, которое организму нужно. После этого макрофаги удаляют избыточное коли­чество антигенного материала, которое может блокировать кооперацию Т- и В-лимфоцитов. Являясь активно секретирующими клетками, макрофаги вырабатывают лизоцим, интер­ферон, ряд компонентов системы комплемента, митогенный белок, стимулирующий синтез ДНК и цитотоксины лимфо­цитами. Интерлейкин-1, выделяемый макрофагами, стимули­рует дифференциацию Тh-хелперов. После контакта с антигенным материалом у них не сохраняется «память».

Клеточный иммунитет более древний в филогенетическом развитии. Как и при гуморальном иммунитете, на внедрение антигена реагируют макрофаги и Тh-хелперы. Тh-лимфоциты соединяются с антигеном и начинают выделять вещество-медиатор - интерлейкин-2. Взаимодействию антигена и Тh-хелперов, а также превращению Тh в клетки-киллеры помогают Тд-лимфоциты. Интерлейкин-2 вы­зывает пролиферацию Т-эффекторов, в результате чего об­разуется множество Т-киллеров. Тк-клетки устремляются к антигенам. Они попадают в кро­воток, быстро собираются на стенках кровеносных сосудов в местах внедрения антигена. После миграции через стенки сосудов в ткани Тк инициируют воспаление и обеспечивают элиминацию вторгшегося антигена. Тк-клетки и обезврежен­ные антигены уничтожаются макрофагами.

При первой встрече с антигеном в организме образуются не только эффекторные клетки, но и клоны клеток памяти, которые при повторной стимуляции тем же антигеном спо­собны превращаться в эффекторные клетки и клетки памя­ти. Продолжительность жизни эффекторной клетки измеря­ется днями, клетки памяти могут сохраняться в популяции лимфоцитов десятилетиями. Поэтому при повторном проник­новении антигена в организм иммунный ответ наступает бы­стрее и более эффективен.

Наряду со специфическими иммунологическими реакция­ми в организме существуют неспецифические факторы защи­ты, которые способствуют повышению его сопротивляемости к антигенам. К ним относятся непроницаемость кожных и слизистых покровов для большинства микроорганизмов, кис­лотность содержимого желудка, бактерицидность кожных секретов, наличие в крови и других жидкостях организма ферментативных систем лизоцима и пропердина. Все эти факторы неспецифической резистентности существуют в ор­ганизме независимо от воздействия антигена и предназначе­ны для других целей. Бактерицидность кожных покровов связана с кислотностью кожных секретов и химическими превращениями, высвобождающими перекись водорода. Лизоцим вырабатывается для регулирования проницаемости мембран путем воздействия на полисахаридные комплексы. Поскольку оболочка некоторых микроорганизмов содержит полисахаридные комплексы, лизоцим разрушает и их.

Нужно подчеркнуть, что иммунная система в норме не ре­агирует иммунологическими реакциями против антигенов собственного организма. Эта неспособность развивать иммун­ный ответ на специфические антигены называется толерант­ностью. Она основана на возможности организма различать свои и чужие молекулы. Толерантность приводит к элими­нации и подавлению всех клонов лимфоцитов, способных реагировать на антигены собственного организма. При нару­шении этого процесса возникают аутоиммунные заболевания.

В настоящее время достигнуты большие успехи в изучении тонких механизмов, лежащих в основе реакции приобретенного иммунитета, выполнен ряд работ, имеющих большое теоретическое и практическое значение в расшифровке механизма иммунитета при гельминтозах и новых подходов в лечении и профилактике этих заболеваний.

В создании иммунитета участвует весь организм как целостная система, все защитные механизмы которого взаимосвязаны в этих функциях. Наряду с факторами специфической защиты действуют многочисленные неспецифические факторы.

Учитывая изложенное, можно представить сложности, возникающие при изучении процесса активации иммунного ответа в деталях при гельминтозах.

 


Дата добавления: 2018-04-05; просмотров: 1211; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!