Базовые принципы действия трансформатора



Трансформатор

Трансформа́тор (от лат. transformo — преобразовывать) — электрический аппарат, состоящий из набора индуктивно связанных обмоток на каком-либо магнитопроводе или без него и предназначенный для преобразования посредством электромагнитной индукции одной или нескольких систем переменного тока в одну или несколько других систем переменного тока без изменения частоты систем (системы) переменного тока [1].

Трансформатор осуществляет преобразование напряжения переменного тока и/или гальваническую развязку в самых различных областях применения - электроэнергетике, электронике и радиотехнике.

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнитомягкого материала.

Содержание
  • 1 История
  • 2 Базовые принципы действия трансформатора
    • 2.1 Закон Фарадея
    • 2.2 Уравнения идеального трансформатора
    • 2.3 Режим холостого хода
    • 2.4 Режим короткого замыкания
    • 2.5 Режим с нагрузкой
  • 3 Теория трансформаторов
    • 3.1 Уравнения линейного трансформатора.
    • 3.2 Т-образная схема замещения трансформатора.
    • 3.3 Потери в трансформаторах
    • 3.4 Режимы работы трансформатора
    • 3.5 Габаритная мощность
    • 3.6 КПД трансформатора
  • 4 Виды трансформаторов
    • 4.1 Силовой трансформатор
    • 4.2 Автотрансформатор
    • 4.3 Трансформатор тока
    • 4.4 Трансформатор напряжения
    • 4.5 Импульсный трансформатор
    • 4.6 Разделительный трансформатор
    • 4.7 Согласующий трансформатор
    • 4.8 Пик-трансформатор
    • 4.9 Сдвоенный дроссель
    • 4.10 Трансфлюксор
  • 5 Основные части конструкции трансформатора
    • 5.1 Магнитная система (магнитопровод)
    • 5.2 Обмотки
      • 5.2.1 Схемы и группы соединения обмоток трёхфазных двухобмоточных трансформаторов
    • 5.3 Бак
  • 6 Обозначение на схемах
  • 7 Применение трансформаторов
    • 7.1 Применение в электросетях
    • 7.2 Применение в источниках электропитания
    • 7.3 Другие применения трансформатора
  • 8 Эксплуатация
    • 8.1 Срок службы
    • 8.2 Работа в параллельном режиме
    • 8.3 Частота
    • 8.4 Регулирование напряжения трансформатора
    • 8.5 Диагностика причин неисправности
  • 9 Перенапряжения трансформатора
    • 9.1 Виды перенапряжений
      • 9.1.1 Способность трансформатора выдерживать перенапряжения
  • 10 См. также
  • 11 Примечания
  • 12 Нормативные документы
  • 13 Литература
  • 14 Ссылки

История

Для создания трансформаторов необходимо было изучение свойств материалов: неметаллических, металлических и магнитных, создания их теории.[2]

Столетов Александр Григорьевич (профессор МУ)сделал первые шаги в этом направлении — обнаружил петлю гистерезиса и доменную структуру ферромагнетика (1880-е).[2]

Братья Гопкинсоны разработали теорию электромагнитных цепей.[2]

В 1831 году английским физиком Майклом Фарадеем было открыто явление электромагнитной индукции, лежащее в основе действия электрического трансформатора, при проведении им основополагающих исследований в области электричества.

Схематичное изображение будущего трансформатора впервые появилось в 1831 году в работах Фарадея и Генри. Однако ни тот, ни другой не отмечали в своём приборе такого свойства трансформатора, как изменение напряжений и токов, то есть трансформирование переменного тока[3].

В 1848 году французский механик Г. Румкорф изобрёл индукционную катушку особой конструкции. Она явилась прообразом трансформатора.[2]

30 ноября 1876 года, дата получения патента Яблочковым Павлом Николаевичем, считается датой рождения первого трансформатора. Это был трансформатор с разомкнутым сердечником, представлявшим собой стержень, на который наматывались обмотки.

Первые трансформаторы с замкнутыми сердечниками были созданы в Англии в 1884 году братьями Джоном и Эдуардом Гопкинсон[3]. В 1885 г. венгерские инженеры фирмы «Ганц и К°» Отто Блати, Карой Циперновский и Микша Дери изобрели трансформатор с замкнутым магнитопроводом, который сыграл важную роль в дальнейшем развитии конструкций трансформаторов.

Большую роль для повышения надежности трансформаторов сыграло введение масляного охлаждения (конец 1880-х годов, Д.Свинберн). Свинберн помещал трансформаторы в керамические сосуды, наполненные маслом, что значительно повышало надежность изоляции обмоток.[4]

С изобретением трансформатора возник технический интерес к переменному току. Русский электротехник Михаил Осипович Доливо-Добровольский в 1889 г. предложил трёхфазную систему переменного тока с тремя проводами (трехфазная система переменного тока с шестью проводами изобретена Николой Тесла, патент США № 381968 от 01.05.1888, заявка на изобретение № 252132 от 12.10.1887), построил первый трёхфазный асинхронный двигатель с короткозамкнутой обмоткой типа "беличья клетка" и трехфазной обмоткой на роторе (трехфазный асинхронный двигатель изобретен Николой Тесла, патент США № 381968 от 01.05.1888, заявка на изобретение № 252132 от 12.10.1887), первый трёхфазный трансформатор с тремя стержнями магнитопровода, расположенными в одной плоскости. На электротехнической выставке во Франкфурте-на-Майне в 1891 г. Доливо-Добровольский демонстрировал опытную высоковольтную электропередачу трёхфазного тока протяжённостью 175 км. Трёхфазный генератор имел мощность 230 кВт при напряжении 95 В.

1928 год можно считать началом производства силовых трансформаторов в СССР, когда начал работать Московский трансформаторный завод (впоследствии — Московский электрозавод).[5]

В начале 1900-х годов английский исследователь-металлург Роберт Хедфилд провёл серию экспериментов для установления влияния добавок на свойства железа. Лишь через несколько лет ему удалось поставить заказчикам первую тонну трансформаторной стали с добавками кремния.[6]

Следующий крупный скачок в технологии производства сердечников был сделан в начале 30-х годов XX в, когда американский металлург Норман П. Гросс установил, что при комбинированном воздействии прокатки и нагревания у кремнистой стали появляются незаурядные магнитные свойства в направлении прокатки: магнитное насыщение увеличивалось на 50 %, потери на гистерезис сокращались в 4 раза, а магнитная проницаемость возрастала в 5 раз.[6]

Базовые принципы действия трансформатора

Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная

Работа трансформатора основана на двух базовых принципах:

  1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)
  2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит, что:

Где

U2 — Напряжение на вторичной обмотке,

N2 — число витков во вторичной обмотке,

Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

Где

U1 — мгновенное значение напряжения на концах первичной обмотки,

N1 — число витков в первичной обмотке.

Поделив уравнение U2 на U1, получим отношение[7]:


Дата добавления: 2015-12-21; просмотров: 17; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!