Алгоритм получения дополнительного кода отрицательного числа.



Для получения дополнительного k-разрядного кода отрицательного числа необходимо

· модуль отрицательного числа представить прямым кодом в k двоичных разрядах;

· значение всех бит инвертировать:все нули заменить на единицы, а единицы на нули(таким образом, получается k-разрядный обратный код исходного числа);

· к полученному обратному коду прибавить единицу.

Пример:

Получим 8-разрядный дополнительный код числа -52:

00110100 - число |-52|=52 в прямом коде

11001011 - число -52 в обратном коде

11001100 - число -52 в дополнительном коде

Можно заметить, что представление целого числа не очень удобно изображать в двоичной системе, поэтому часто используют шестнадцатеричное представление:

1100 1100

С С


 

9. Физическая и функциональная структура ЦП. Устройство управления: устройство и принцип работы

Микропроцессор (МП). Это центральный блок ПК, предназначенный для управления работой всех блоков машины для выполнения арифметических и логических операций над информацией. Конструктивно представляет собой неболь­шую микросхему, находящуюся внутри системного блока и установленную на материнской плате, связанную с материнской платой интерфейсом процессорного разъема (Socket).

В состав микропроцессора входят:

· устройство управления (УУ) – формирует и подает во все блоки машины в нужные моменты времени определенные сигналы управления (управляющие импульсы), обусловленные спецификой выполняемой операции и результатами предыдущих операций; формирует адреса ячеек памяти, используемых выполняемой операцией, и передает эти адреса в соответствующие блоки ЭВМ, опорную последовательность импульсов устройство управления получает от генератора тактовых импульсов;

· арифметико-логическое устройство (АЛУ) – предназначено для выполнения всех арифметических и логических операций над числовой и символьной информацией (в некоторых моделях ПК для ускорения выполнения операций к АЛУ поключается дополнительный математический сопроцессор);

· микропроцессорная память (МПП) — служит для кратковременного хранения, записи и выдачи информации, непосредственно используемой в вычислениях в ближайшие такты работы машины. МПП строится на регистрах и используется для обеспечения высокого быстродействия машины, ибо основная память (ОП) не всегда обеспечивает скорость записи, поиска и считывания информации, необходимую для эффективной работы быстродействующего микропроцессора. Регистры — быстродействующие ячейки памяти различной длины (в отличие от ячеек ОП, имеющих стандартную длину 1 байт и более низкое быстродействие);

· интерфейсная система микропроцессора — реализует сопряжение и связь с другими устройствами ПК; включает в себя внутренний интерфейс МП, буферные запоминающие регистры и схемы управления портами ввода-вывода (ПВВ) и системной шиной. Интерфейс (interface) — совокупность средств сопряжения и связи устройств компьютера, обеспечивающая их эффективное взаимодействие. Порт ввода-вывода (I/O — Input/Output port) — аппаратура сопряжения, позволяющая под­ключить к микропроцессору другое устройство ПК.

Процессоры классифицируются по базовому типу, называющемуся семейством. С целью преемственности программного обеспечения последующие модели и модификации процессоров, как правило, содержат всю систему команд своих предшественников. Существует большое количество различных семейств процессоров, среди которых можно выделить семейство Intel и совместимых с ними AMD и Cyrix, на которых базируется значительная часть ПК. Фирмой Intel был создан процессор Pentium и его модификации Pentium Pro, Pentium II, Pentium III, Pentium IV. Процессоры фирмы Motorola, применяемые в компьютерах фирмы Apple, относятся к другому семейству.

Основными характеристиками процессора являются:

· быстродействие — количество операций, производимых в 1 секунду, измеряется в бит/сек. Каждая последующая модель имеет более высокую производительность по сравнению с предыдущей. Современные процессоры обладают расширением ММХ (MultiMedia eXtention — расширение мультимедиа);

· тактовая частота — количество тактов, производимых про­цессором за 1 секунду. Операции, производимые процессо­ром, не являются непрерывными, они разделены на такты. Эта характеристика определяет скорость выполнения опера­ций и непосредственно влияет на производительность про­цессора. Процессор Pentium и его модификации имеют тактовые частоты от 60 МГц до 1,5 ГГц (1,5 миллиарда операций в секунду);

· разрядность — количество двоичных разрядов, которые процессор обрабатывает за один такт. Указывая разрядность процессора 64, имеют в виду, что процессор имеет 64-разрядную шину данных, т.е. за один такт он обрабатывает 64 бита.

 

Логика управления организует взаимодействие всех узлов процессора, перенаправляет данные, синхронизирует работу процессора с внешними сигналами, а также реализует процедуры ввода и вывода информации.

Таким образом, в ходе работы процессора схема выборки команд выбирает последовательно команды из памяти, затем эти команды выполняются, причем в случае необходимости обработки данных подключается АЛУ. На входы АЛУ могут подаваться обрабатываемые данные из памяти или из внутренних регистров. Во внутренних регистрах хранятся также коды адресов обрабатываемых данных, расположенных в памяти. Результат обработки в АЛУ изменяет состояние регистра признаков и записывается во внутренний регистр или в память (как источник, так и приемник данных указывается в составе кода команды). При необходимости информация может переписываться из памяти (или из устройства ввода/вывода) во внутренний регистр или из внутреннего регистра в память (или в устройство ввода/вывода).

Внутренние регистры любого микропроцессора обязательно выполняют две служебные функции:

· определяют адрес в памяти, где находится выполняемая в данный момент команда (функция счетчика команд или указателя команд);

· определяют текущий адрес стека (функция указателя стека).

В разных процессорах для каждой из этих функций может отводиться один или два внутренних регистра. Эти два указателя отличаются от других не только своим специфическим, служебным, системным назначением, но и особым способом изменения содержимого. Их содержимое программы могут менять только в случае крайней необходимости, так как любая ошибка при этом грозит нарушением работы компьютера, зависанием и порчей содержимого памяти.

Содержимое указателя (счетчика) команд изменяется следующим образом. В начале работы системы (при включении питания) в него заносится раз и навсегда установленное значение. Это первый адрес программы начального запуска. Затем после выборки из памяти каждой следующей команды значение указателя команд автоматически увеличивается (инкрементируется) на единицу (или на два в зависимости от формата команд и типа процессора). То есть следующая команда будет выбираться из следующего по порядку адреса памяти. При выполнении команд перехода, нарушающих последовательный перебор адресов памяти, в указатель команд принудительно записывается новое значение — новый адрес в памяти, начиная с которого адреса команд опять же будут перебираться последовательно. Такая же смена содержимого указателя команд производится при вызове подпрограммы и возврате из нее или при начале обработки прерывания и после его окончания.

10. Арифметико-логическое устройство: классификация, устройство и принцип действия

Арифметико-логическое устройство (АЛУ) - центральная часть процессора, выполняющая арифметические и логические операции.

АЛУ реализует важную часть процесса обработки данных. Она заключается в выполнении набора простых операций. Операции АЛУ подразделяются на три основные категории: арифметические, логические и операции над битами. Арифметической операцией называют процедуру обработки данных, аргументы и результат которой являются числами (сложение, вычитание, умножение, деление,...). Логической операцией именуют процедуру, осуществляющую построение сложного высказывания (операции И, ИЛИ, НЕ,...). Операции над битами обычно подразумевают сдвиги.

АЛУ состоит из регистров, сумматора с соответствующими логическими схемами и элемента управления выполняемым процессом. Устройство работает в соответствии с сообщаемыми ему именами (кодами) операций, которые при пересылке данных нужно выполнить над переменными, помещаемыми в регистры.

Арифметико-логическое устройство функционально можно разделить на две части:

а) микропрограммное устройство (устройство управления), задающее последовательность микрокоманд (команд);

б) операционное устройство (АЛУ), в котором реализуется заданная последовательность микрокоманд (команд).

Структурная схема АЛУ и его связь с другими блоками машины показаны на рисунке 1. В состав АЛУ входят регистры Рг1 - Рг7, в которых обрабатывается информация, поступающая из оперативной или пассивной памяти N1, N2,...NS; логические схемы, реализующие обработку слов по микрокомандам, поступающим из устройства управления.

Закон переработки информации задает микропрограмма, которая записывается в виде последовательности микрокоманд A1,A2,..., Аn-1,An. При этом различают два вида микрокоманд: внешние, то есть такие микрокоманды, которые поступают в АЛУ от внешних источников и вызывают в нем те или иные преобразования информации (на рис. 1 микрокоманды A1,A2,..., Аn), и внутренние, которые генерируются в АЛУ и воздействуют на микропрограммное устройство, изменяя естественный порядок следования микрокоманд. Например, АЛУ может генерировать признаки в зависимости от результата вычислений: признак переполнения, признак отрицательного числа, признак равенства 0 всех разрядов числа др. На рис. 1 эти микрокоманды обозначены р1, p2,..., рm.

Результаты вычислений из АЛУ передаются по кодовым шинам записи у1, у2,...,уs, в ОЗУ. Функции регистров, входящих в АЛУ:

Рг1 - сумматор (или сумматоры) - основной регистр АЛУ, в котором образуется результат вычислений;

Рг2, РгЗ - регистры слагаемых, сомножителей, делимого или делителя (в зависимости от выполняемой операции);

Рг4 - адресный регистр (или адресные регистры), предназначен для запоминания (иногда и формирования) адреса операндов и результата;

Ргб - k индексных регистров, содержимое которых используется для формирования адресов;

Рг7 - i вспомогательных регистров, которые по желанию программиста могут быть аккумуляторами, индексными регистрами или использоваться для запоминания промежуточных результатов.

Часть операционных регистров является программно-доступной, то есть они могут быть адресованы в команде для выполнения операций с их содержимым. К ним относятся: сумматор, индексные регистры, некоторые вспомогательные регистры.

Остальные регистры программно-недоступные, так как они не могут быть адресованы в программе. Операционные устройства можно классифицировать по виду обрабатываемой информации, по способу обработки информации и логической структуре.

АЛУ может оперировать четырьмя типами информационных объектов: булевскими (1 бит), цифровыми (4 бита), байтными (8 бит) и адресными (16 бит). В АЛУ выполняется 51 различная операция пересылки или преобразования этих данных. Так как используется 11 режимов адресации (7 для данных и 4 для адресов), то путем комбинирования "операция/ режим адресации" базовое число команд 111 расширяется до 255 из 256 возможных при однобайтном коде операции.


 

11. Иерархическая организация памяти ЭВМ. ОЗУ, ПЗУ. ВЗУ – основные характеристики. Область применения.

Память ЭВМ должна иметь большую информационную емкость , малое время обращения (высокое быстродействие), высокую надежность и низкую стоимость. Но с увеличением емкости снижается быстродействие и растет стоимость. Деление памяти на ОЗУ и ВЗУ не снимает это противоречие полностью, так как различие в быстродействии процессора, ОЗУ и ВЗУ очень велико. Поэтому обмен информацией производится через дополнительные буферные устройства, то есть память ЭВМ имеет иерархическую многоуровневую структуру. Чем больше быстродействие ЗУ, тем выше стоимость хранения 1 байта, тем меньшую емкость имеет ЗУ.

Виды памяти:

1) регистры микропроцессорной памяти, а также кэш-память первого и второго уровня

2) внутренняя память ПЗУ, ОЗУ

3) внешняя память

4) массовая или архивная память

Эта система запоминающих устройств работает как единое ЗУ с большой емкостью (за счет внешних ЗУ) и высоким быстродействием (за счет внутренних ЗУ).

Микропроцессорная память -- высокоскоростная память небольшой емкости, входящая в МП и используемая АЛУ для хранения операндов и промежуточных результатов вычислений. КЭШ-память -- это буферная, не доступная для пользователя память, автоматически используемая компьютером для ускорения операций с информацией, хранящейся в медленно действующих запоминающих устройствах. Для ускорения операций с основной памятью организуется регистровая КЭШ-память внутри микропроцессора (КЭШ-память первого уровня) или вне микропроцессора на материнской плате (КЭШ-память второго уровня); для ускорения операций с дисковой памятью организуется КЭШ-память на ячейках электронной памяти.

Внутренняя память состоит из ПЗУ (ROM -- Read Only Memory) и ОЗУ (RAM -- Random Access Memory -- память с произвольным доступом). ПЗУ состоит из установленных на материнской плате микросхем и используется для хранения неизменяемой информации: загрузочных программ операционной системы (ОС), программ тестирования устройств компьютера и некоторых драйверов базовой системы ввода-вывода (BIOS -- Base Input-Output System) и др. Из ПЗУ можно только считывать информацию, емкость ПЗУ -- сотни Кбайт. Это энергонезависимая память, -- при отключении ЭВМ информация сохраняется.

Внешняя память относится к внешним устройствам ЭВМ и используется для долговременного хранения любой информации, которая может потребоваться. В ВЗУ хранится программное обеспечение ЭВМ. Внешняя память: НЖМД и ЖМД, НГМД и ГМД (магнитный диск), стример (НМЛ -- накопитель на магнитной ленте), оптические накопители для CD-ROM и DVD-дисков.

Информационная структура внешней памяти -- файловая. Наименьшей именуемой единицей является файл, -- наименованная совокупность однородных данных. Информация в файле состоит из битов и байтов, но они не имеют адресов, так как носитель (магнитный диск) не дискретный.

Организация внутренней памяти. ОЗУ предназначено для хранения информации (программ и данных), непосредственно участвующей в работе ЭВМ в текущий или в последующие моменты времени. ОЗУ - энергозависимая память, то есть при отключении питания записанная в нем информация теряется. ОЗУ - БИС, содержащие матрицу ячеек памяти, состоящих из триггеров -- полупроводниковых запоминающих элементов, которые способны находиться в двух устойчивых состояниях, соответствующих логическим нулю и единице.

Внутренняя память дискретна, ее информационная структура представляет собой матрицу двоичных ячеек, в каждой из которых хранится по 1 биту информации. Она адресуема: каждый байт (8 ячеек по 1 биту) имеет свой адрес -- порядковый номер. Доступ к байтам ОЗУ происходит по адресам. Так как ОЗУ позволяет обратиться к произвольному байту, то эта память называется памятью произвольного доступа (Random Access Memory).

ОЗУ ЭВМ подразделяется на две области: 1) непосредственно адресуемая память емкостью 1024 Кбайт, занимающая ячейки с адресами от 0 до 1024 Кбайт; 2) расширенная память с адресами 1024 Кбайт и выше, доступ к которой возможен при использовании специальных программ (драйверов). Стандартная память - непосредственно адресуемая память от 0 до 640 Кбайт. Верхняя память - непосредственно адресуемая память от 640 до 1024 Кбайт. Она зарезервирована для видеопамяти и работы ПЗУ.

Преимущества ОЗУ: высокое быстродействие и прямой адресный доступ к ячейке. Недостаток ОЗУ: небольшая емкость (16-32-64-128-256-512 Мбайт), энергозависимость.

Оперативная память включает в себя сравнительно медленную динамическую память DRAM и быструю статическую память SRAM. Центральный процессор работает быстрее DRAM, поэтому ОЗУ большого объема на DRAM используют совместно с небольшой кэш-памятью на SRAM. Кэш-память 1 уровня находится внутри процессора, а 2 уровня - вне процессора на системной плате.

Динамическая память DRAM состоит из запоминающих ячеек, выполненных в виде конденсаторов, собранных в ИС и образующих двумерную матрицу. При записи логической 1 соответствующий конденсатор заряжается, а при записи 0 -- разряжается. Схема считывания разряжает через себя конденсатор, и чтобы записанная информация сохранилась, подзаряжает его до прежнего уровня. Со временем конденсатор разряжается, информация теряется, поэтому такая память требует периодической подзарядки (регенерации), то есть может работать только в динамическом режиме.

Статическая память SRAM при наличии питания хранит информацию сколь угодно долго. Состоит из триггеров - элементов с двумя устойчивыми состояниями. Статическая память SRAM имеет время доступа 1-10 нс, и поэтому может работать на частоте системной шины ЭВМ. Используется для кэширования ОЗУ.

ПЗУ (ROM) состоит из ИС, программируемых в процессе изготовления или после него. Различают:

1) масочные ПЗУ, их содержимое определяется рисунком технологического шаблона (быстродействие 30-70 нс);

2) однократно программируемые ПЗУ, запись информации в которые осуществляется путем прожигания ячеек памяти в специальных устройствах - программаторах;

3) перепрограммируемые ПЗУ, которые могут быть перепрограммированы. Наиболее распространены ПЗУ, информация в которых стирается ультрафиолетовыми лучами.


 


Дата добавления: 2015-12-17; просмотров: 20; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!