Всплывающий воздушный пузырек, присоединенная масса и закон Архимеда.



МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ

КАЗАНСКИЙ ГОСУДАРСВЕННЫЙ АРХИТЕКТУРНО – СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Кафедра водоснабжения и водоотведения

 

 

Реферат на тему

“Характеристика ламинарного и турбулентного движения жидкости ”

           

 

 

Выполнил: ст. гр. 0ПГ02

Данилов О.Ю.

Проверил: старший преподователь

                                              Сафиуллин Фанис Фагимуллович

 

Казань, 2021 г.

СОДЕРЖАНИЕ

1.Вязкость. Коэффициент вязкости..........................................................................

2.Ламинарное и турбулентное движение...............................................................

3.Вязкий поток...........................................................................................................

4.Число Рейнольдса...................................................................................................

5.Всплывающий воздушный пузырек, присоединенная масса и закон Архимеда....................................................................................................................

6.Сопротивление при движении тела в воде..........................................................

7.Вклад русских ученых в изучение турбулентности............................................

Список литературы....................................................................................................


 

Вязкость. Коэффициент вязкости

В реальных жидкостях почти никогда нельзя пренебречь внутренним трением, вязкостью; большинство интересных вещей в поведении жидкости так или иначе связано с этим свойством. Циркуляция сухой воды (т.е. ее вязкость не учитывается) никогда не изменяется: если ее не было в начале, то она никогда не появится. В результате проведения экспериментов выясняется, что скорость жидкости на поверхности твердого тела не равна нулю. Можно заметить, что лопасти вентилятора собирают на себе тонкий слой пыли. Пыль не сдувается т.к. скорость воздуха относительно них, измеренная непосредственно на поверхности равна нулю. Теория должна учитывать, что во всех обычных жидкостях молекулы, находящиеся рядом с поверхностью имеют нулевую скорость (относительно самой поверхности).

Можно предположить, что если приложить к жидкости напряжение сдвига, то, сколь мало оно бы ни было, жидкость всё равно течет. В статическом случае никаких напряжений сдвига нет. Однако, когда равновесия еще нет, в момент, когда вы давите на жидкость, силы сдвига вполне могут быть. Вязкость как раз и описывает эти силы, возникающие в движущейся жидкости. Чтобы измерить силы сдвига в процессе движения жидкости, предположим, что имеются две плоские твердые пластины, между которыми находится вода. Причем одна из пластин неподвижна, тогда как другая движется параллельно ей с малой скоростью V0. Если измерять силу, требуемую для поддержания движения верхней пластины, выяснится, что она пропорциональна площади пластины и отношению V0 /d, где d - расстояние между пластинами. Таким образом, напряжение сдвига F/A пропорционально V0 /d.

Коэффициент пропорциональности h называется коэффициентом вязкости.

 


 

Ламинарное и турбулентное движение.

 

В жидкости течение может быть ламинарным или турбулентным.

 

На рисунке 1 это показано для одной окрашенной струи жидкости, текущей в другой.

 

В случае (а) струя окрашенной жидкости сохраняет неизменную форму и не смешивается с остальной жидкостью. Это ламинарное течение струи жидкости. В случае (б) окрашенная струя создает различные завихрения, картина которых постоянно меняется с течением времени. Это турбулентное течение струи жидкости.

Ламинарное (слоистое) течение это такое течение, при котором слои жидкости текут, не перемешиваясь, скользя друг относительно друга. Ламинарное течение является стационарным, т.е. скорость течения в каждой точке пространства остается постоянной.

 

Турбулентное (вихревое) течение– это такое течение, при котором скорости частиц жидкости в каждой точке беспорядочно меняются. Турбулентное течение - это хаотическое, крайне нерегулярное, неупорядоченное течение жидкости. Элементы жидкости совершают движение по сложным неупорядоченным траекториям, что приводит к перемешиванию слоев и образованию местных завихрений. Турбулентное течение связано с дополнительной затратой энергии при движении жидкости: часть энергии расходуется на беспорядочное движение, направление которого отличается от основного направления потока.

 

Понятия ламинарности и турбулентности применимы как к течению жидкости по трубам, так и к обтеканию ею различных тел. В обоих случаях характер течения зависит от скорости течения, свойств жидкости и характерного линейного размера трубы или обтекаемого тела.

 

(рис. 1)

 

Вязкий поток.

В общем случае сжимаемой жидкости в напряжениях есть и другой член, который зависит от производных скорости. Общее выражение имеет вид

Где dij обозначает символ Кронекера, который равен единице при i=j и нулю при i?j). Ко всем диагональным элементам S тензора напряжений прибавляется дополнительный член . Если жидкость несжимаема, то равно нулю и дополнительного члена не появляется, так как он действительно имеет отношение к внутренним силам при сжатии. Коэффициент h - коэффициент вязкости.


 


 

Число Рейнольдса.

Течение жидкости по трубе зависит от свойств жидкости, скорости ее течения и размеров трубы.

Осборн Рейнольдс (1842-1912) изучал переход от ламинарного движения к турбулентному.

Турбулентность возникает, когда определенная комбинация величин, характеризующих движение превосходит некоторое критическое значение.

Если увеличивать скорость потока так, что число Рейнольдса станет несколько больше единицы, то увидим, что поток изменился. За сферой возникают вихри (см рис. 5). Обычно считают, что циркуляция нарастает постепенно. Когда ? =от 10 до 30 поток меняет свой характер.

 

Когда число Рейнольдса проходит значение в районе 40, характер движения претерпевает неожиданное и резкое изменение. Один из вихрей за цилиндром становится настолько длинным, что отрывается и плывет вниз по течению вместе с жидкостью. При этом жидкость за цилиндром снова закручивается и возникает новый вихрь. Вихри отслаиваются то с одной, то с другой стороны и в какой-то момент вытягиваются вихревым следом за цилиндром. Такой поток вихрей называется цепочкой Кармана. Она всегда появляется для чисел Рейнольдса ?>40.

 

Можно представить физическую причину этих вихрей. Известно, что на поверхности цилиндра скорость жидкости должна быть равной нулю, но при удалении от поверхности скорость быстро возрастает. Это местное изменение скорости жидкости и создаёт вихри. Если скорость достаточно мала, у вихрей есть время “расплыться” на большую область. Когда достигает нескольких тысяч, вихри начинают заполнять тонкую ленту. В таком слое поток хаотичен и нерегулярен. Эта область называется пограничным слоем . Этот поток пробивает себе дорогу дальше и дальше. В этой области, турбулентности, скорости очень нерегулярны и беспорядочны. С увеличением числа Рейнольдса до 105, мы получаем турбулентный след.

 

 

Всплывающий воздушный пузырек, присоединенная масса и закон Архимеда.

Когда пузырек всплывает, некоторая масса воды устремляется вниз, заполняя освобожденное место. Пузырек взаимодействует с движущейся, а не с неподвижной водой. Внешне это выглядит так, что c массой всплывающего пузырька движется “присоединенная масса” воды, которая равна m=Vr/2, т.е. половине массы вытесненной воды. Это происходит из-за сложного движения жидкости вокруг самого пузырька.

 

Ламинарные и турбулентные течения в природе и технике

 

Если подсчитать число Рейнольдса для атмосферных и океанских течений, то окажется, что они очень велики. Это указывает на то, что такие течения не могут быть ламинарными. Действительно, все мы видели, что даже легкий ветерок заставляет трепетать флаги, т. е. воздушные потоки имеют вихревую структуру. В природе вихри появляются в той части потока, где скорость быстро меняется в направлении, перпендикулярном потоку. Каждому приходилось видеть вихри в быстрой реке на переходе от быстрины к замедленному течению у берега. Целая цепочка вихрей может тянуться за движущимся автомобилем, что особенно удобно наблюдать в снегопад.

 

Вихревой характер сильного ветра был замечен в 1821 г. У. Рэдфилдом, содержателем небольшого магазина в штате Коннектикут (США), который обратил внимание на поваленные после шторма деревья. В одном месте деревья лежали макушками к северо-западу, тогда как на некотором расстоянии макушки указывали на прямо противоположное направление. Отсюда Рэдфилд сделал вывод, что шторм представляет собой вращательную систему ветров. Беседуя с моряками и анализируя судовые журналы, он установил направления вращения крупных вихрей и нашел траектории их центров. В 1831 году вышел труд У. Рэдфилда, излагающий результаты его исследований.

 

Оказалось, что вихревые системы в атмосфере Земли бывают двух видов – циклоны и антициклоны. В Северном полушарии Земли все циклоны вращаются против часовой стрелки, а антициклоны - по часовой, в Южном – наоборот. Направление вихрей определяется силой Кориолиса. В тропиках циклоны забирают энергию от нагретой поверхности океана и приобретают огромную мощь. За один день большой ураган расходует энергию, равную энергии взрыва 13 000 мегатонных ядерных бомб. Диаметр тропического циклона, его еще называют ураганом или тайфуном, составляет несколько сот километров, высота – до 12-15 км, скорость ветра достигает 400 – 600 км/час. Самые большие скорости ветра в урагане наблюдаются вокруг так называемого “глаза бури” - зоны покоя в центре урагана.

Внетропический циклон (называемый обычно просто циклоном) – это самый крупный атмосферный вихрь, достигающий в поперечнике нескольких тысяч километров в поперечнике. Высота его колеблется между 2 - 4 и 15 – 20 км. Скорость ветра в нем в большинстве случаев не превышает 40 – 70 км/час. Внетропические циклоны “глазом” не обладают.

 

Еще четче зона покоя (полость) выражена у мелкомасштабных вихрей – смерчей (торнадо, тромбов). Размеры их очень малы: ширина – от нескольких метров до 2 – 3 км, в среднем 200 – 400 м, высота от нескольких десятков до 1500 – 2000 м. Скорость ветра в смерче иногда превышает звуковую (1200 км/час!).

 

Если атмосферные вихри известны давно, аналогичная система океанских течений была обнаружена советскими океанологами в конце 20-го века. Это было выдающимся открытием.

 

В атмосфере больших планет также наблюдаются вихревые образования. Особенно удивительно так называемое Красное пятно на Юпитере, вихрь, устойчиво существующий в течение всех лет наблюдений в телескопы. На Солнце к вязкости, инерционным силам добавляются еще силы взаимодействия с магнитным полем. Это усложняет структуру солнечных протуберанцев. В межзвездных туманностях также можно наблюдать вихревые образования. Возможно, что галактики образовались как турбулентные вихри при расширении вещества Вселенной.

 

Ламинарное течение наблюдается при течении крови по капиллярам и кровеносным сосудам. Было обнаружено, что дельфины могут эффективно подавлять возникновение турбулентности, благодаря чему могут быстро и бесшумно перемещаться в воде. Созданные под влиянием этих исследований специальные покрытия позволили сделать бесшумные подводные лодки. Подводная лодка “Варшавянка”, она же “Kilo” или “Черная дыра” обладает шумностью на уровне естественных шумов океана.

 

Было обнаружено, что малые добавки некоторых полимеров переводят турбулентное течение в ламинарное. Это приводит к резкому снижению сопротивления. Сейчас эти добавки используются пожарными, чтобы увеличить скорость вытекания струи из брандспойта.



Дата добавления: 2022-06-11; просмотров: 52; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!