Дифракционные картины от различных препятствий.



ФИЗИКА, ГРУППА № 34, 30.09.2021 г.

Занятие № 14

Тема: Дифракция света.

Цель : изучение опыта Юнга, теории Френеля, рассмотреть примеры дифракции от различных препятствий, границы применимости геометрической оптики.

План:

1. Опыт Юнга.

2. Теория Френеля.

3. Дифракционные картины от различных препятствий.

4. Границы применимости геометрической оптики.

 

 

Теоретический материал для самостоятельного изучения

Если свет представляет собой волновой процесс, то наряду с интерференцией должна наблюдаться и дифракция света. Ведь дифракция — огибание волнами краев препятствий — присуща любому волновому движению.

Пропуская тонкий пучок света через маленькое отверстие, можно наблюдать нарушение закона прямолинейного распространения света: светлое пятно на экране против отверстия будет иметь бо́льшие размеры, чем размеры пучка.

 

Опыт Юнга.

В 1802 г. Т. Юнг, открывший интерференцию света, поставил классический опыт по дифракции.

В непрозрачной ширме он проколол булавкой два маленьких отверстия В и С на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют ведь только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. Вследствие дифракции от отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции этих двух световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаружил, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

 

Теория Френеля.

Исследование дифракции было завершено в работах О. Френеля. Френель не только более детально исследовал различные случаи дифракции на опыте, но и разработал количественную теорию дифракции, позволяющую в принципе рассчитать дифракционную картину, возникающую при огибании светом любых препятствий. Им же было впервые объяснено прямолинейное распространение света в однородной среде на основе волновой теории.

Согласно идее Френеля каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны (принцип Гюйгенса — Френеля).

Для того чтобы вычислить амплитуду световой волны в любой точке пространства, надо мысленно окружить источник света замкнутой поверхностью. Интерференция волн от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке пространства.

Свет от точечного источника S, испускающего сферические волны, достигает произвольной точки В пространства. Если рассмотреть вторичные источники на сферической волновой поверхности радиусом R, то результат интерференции вторичных волн от этих источников в точке В оказывается таким, как если бы лишь вторичные источники на малом сферическом сегменте ab посылали свет в точку В. Вторичные волны, испущенные источниками, расположенными на остальной части поверхности, гасят друг друга в результате интерференции. Поэтому все происходит так, как если бы свет распространялся вдоль прямой SB, т. е. прямолинейно.

На основе этой теории Френель доказал прямолинейность распространения света и рассмотрел количественно дифракцию на различного рода препятствиях.

 

Дифракционные картины от различных препятствий.

Расчеты, сделанные Френелем, полностью были подтверждены экспериментом. Из-за того что длина световой волны очень мала, угол отклонения света от направления прямолинейного распространения невелик. Поэтому для отчетливого наблюдения дифракции нужно либо использовать очень маленькие препятствия, либо не располагать экран далеко от препятствий. При расстоянии между препятствием и экраном порядка метра размеры препятствия не должны превышать сотых долей миллиметра. Если же расстояние до экрана достигает сотен метров или нескольких километров, то дифракцию можно наблюдать на препятствиях размерами в несколько сантиметров и даже метров.

На рисунке выше а—в схематично показаны дифракционные картины от различных препятствий: а — от тонкой проволочки; б — от круглого отверстия; в — от круглого экрана.

 


Дата добавления: 2021-11-30; просмотров: 24; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!