Паровой автомобиль и его возможности.

Введение.

 

С паровыми автомобилями в истории автомобилестроения связана целая эпоха. Недаром девятнадцатый век называют веком пара.

Все начиналось с паровой повозки, которую строили как прообраз кареты, а закончилось тяжелыми грузовиками и полной тишиной. Несмотря на то, что последние модели паровиков были почти бесшумны, долговечны, просты в управлении, быстро запускались, почти не загрязняли воздух, они  в одном отставали от бензиновых – на единицу их мощности приходится вдвое–втрое большая масса. Именно это обстоятельство и затормозило  внедрение в практику автомобилей с такими  видами двигателей. Бензиновый двигатель пока остается вне конкуренции.

В данной работе рассмотрены основные этапы развития парового автотранспорта, выявлены основные достижения и показаны настоящее, а быть может и будущее паровиков.

2.Паровой двигатель.

 

“Паровой двигатель, или двигатель внешнего сгорания – это двигатель, приводимый в действие силой пара”[1].  Теоретически любой газ можно использовать в качестве рабочего тела такого двигателя, однако на практике используется только пар, поскольку он может запасти больше энергии, чем какое-либо иное столь же доступное рабочее тело. Если в качестве рабочего тела применить воздух, то для получения той же мощности его придется разогреть до более высокой температуры. А для этого потребуется более сложный нагреватель, чем паровой котел, и более надежная теплоизоляция всех элементов системы[2] . Пар, получаемый путем  нагрева воды, используют для движения. В некоторых  двигателях сила пара заставляет двигаться поршни, расположенные в цилиндрах. Таким образом создается возвратно-поступательное движение. Подсоединенный механизм обычно преобразует его во вращательное движение. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора.

Самый первый в истории паровой двигателей представлял собой род насоса, при помощи которого откачивали воду, заливающую шахты. Его изобрел в 1689 г. Томас СЭЙВЕРИ. В этой машине, совсем простой по конструкции, пар конденсировался, превращаясь в небольшое количество воды, и за счет этого создавался частичный вакуум, благодаря чему отсасывалась вода из шахтного ствола. В 1712 г. Томас Ньюкомен изобрел поршневой насос, приводимый в действие паром. В 1760-е гг. Джеймс Ватт улучшил конструкцию Ньюкомена и создал намного более эффективные паровые двигатели.

 Основное достоинство паровой машины - ее относительная простота и  хорошие тяговые характеристики независимо от скорости работы. Это позволяет обойтись без редуктора, что выгодно отличает такой двигатель от двигателя внутреннего сгорания, который на малых оборотах недодает мощность. Поэтому паровая машина очень удобна в качестве тягового двигателя, например, на паровозах. К серьезным недостаткам паровых машин относятся их низкий КПД, сравнительно невысокая максимальная скорость, большой вес и постоянный расход топлива и воды. (Ранее требовалось значительное время, чтобы паровой котел дал пар и двигатель заработал; современные котлы позволяют быстро запустить двигатель.)

В прошлом паровые машины были по существу единственным первичным двигателем (если не считать водяного колеса), однако в 20 в. их вытеснили электродвигатели, двигатели внутреннего сгорания, газовые и паровые турбины, обладающие более высокими КПД, а также большей компактностью, эффективностью и универсальностью применения. На повозку паровую машину поставили впервые в 1769, однако практически используемые машины появились только в 1860-х годах. В 1906 на паромобиле Стэнли был установлен мировой рекорд скорости 190 км/ч на трассе в Орландо-Бич (шт. Флорида). Однако в последующие 20 лет паровые двигатели на автомобилях были вытеснены бензиновыми двигателями внутреннего сгорания. Паровые двигатели проиграли соревнование по двум причинам: они замерзали зимой и были неэкономичны, поскольку требовали много топлива и воды.
       Для применения на автомобилях рассматриваются и другие типы двигателей внешнего сгорания. В двигателе Стирлинга используется горячий воздух, гелий или водород, а не пар. Рабочий цикл двигателя осуществляется за 4 такта: сжатие, нагревание, рабочий ход, охлаждение. Рабочий газ нагревается внешним источником тепла, как в паровой машине, а охлаждается водой, постоянно циркулируя в двигателе. Этот двигатель был изобретен в 1816 шотландцем

Р. Стирлингом. Двигатель Стирлинга имеет определенные преимущества по сравнению с паровыми машинами, а именно, слабое воздействие на окружающую среду и довольно высокий КПД. Наиболее совершенные конструкции двигателей Стирлинга разработаны для судов и грузовых автомобилей.

 

 

Паровой автомобиль и его возможности.

 

“Первым практически действовавшим паровым автомобилем считается «паровая телега» француза Никола-Жозефа Кюньо (1715—1804). Он хотел создать мощную тяговую силу для артиллерийских орудий и перевозки снарядов”[3].

Телега была изготовлена в 1769 г. в мастерских парижского арсенала, поэтому в конструкции были использованы толстые листы железа, медные втулки, дубовые брусья, крупными болты и заклепки.  Дополнительный отпечаток на конструкцию телеги наложили материалы и орудия производства. В итоге она весила целую тонну, столько же пришлось на воду и топливо, еще столько же на долю самой паровой машины.

Платформа для грузов крепилась к дубовой раме телеги. Рама опиралась на заднюю ось с колесами артиллерийского типа. Переднее колесо с шипами для лучшего сцепления с дорогой могло поворачиваться на подрамнике-вилке и шкворне. С управлением телегой еле справлялись два человека. Перевозя до 3 т груза, телега передвигалась со скоростью пешехода — 2—4 км/ч. Две лошадиные силы, которые развивала машина, давались нелегко. Несмотря на большой объем котла, давление пара быстро падало. Чтобы поддерживать давление, через каждые четверть часа приходилось останавливаться и разжигать топку. Эта процедура отнимала столько же времени, сколько перед этим длилась поездка.

В Великобритании тем временем некоторые ученики Уатта Уильям Мердок и Ричард Тревитик испытывали свои модели. В 1801 Ричард Тревитик построил первый в Англии паромобиль, а в 1803 году — еще один. Экипаж Тревитика был заднеприводным и с восемью пассажирами разгонялся до 13 км/ч! А в 1829 году паровики стали самым быстрым транспортом для пассажиров — скорость вместительных омнибусов (от латинского «повозка для всех») достигала 24 км/ч. И никаких перекладных!

Британское паромобилестроение было на подъеме. В 1834 году паровой омнибус Мачерони и Сквайра показал рекордную для тех лет надежность — 2740 километров без какого-либо ремонта. А давление в паровом котле достигало уже 10,3 атмосфер.

В1875 году  в Париже была продемонстрирована «Послушная» — первое паровое детище Болле. Имея общую массу 5 т, она расходовала 2,5 кг угля и 14 л воды на 1 км пробега, развивала скорость до 25 км/ч — показатели в 1,5—2 раза лучшие, чем у английских паровых омнибусов.

Болле продолжал совершенствовать конструкцию, придал повозке более традиционный вид. Его модель 80-х годов («Новая») имела еще более высокие показатели: масса 3,5 т, расход угля 1,5 кг и воды 7 л на километр, скорость 38 км/ч. «Новая» уже могла состязаться с только что появившимися бензиновыми автомобилями. Если не принимать во внимание паровой двигатель, то повозки Болле гораздо больше похожи по своей компоновке на будущий «классический» автомобиль, чем первые бензиновые «безлошадные экипажи», официально считающиеся автомобилями. В повозках Болле предвосхищены даже такие конструктивные элементы, как независимая подвеска колес и металлический кузов, получившие распространение на автомобилях лишь в 30-х годах XX века.

В 1868 году удалось использовать в качестве топлива не уголь, а подешевевший керосин, автором этого был Жозеф Равель. Место угольных колосников в топках котлов заняли керосиновые горелки, рабочий процесс удалось автоматизировать. Вскоре паровой грузовик, работавший на керосине, предложила британская фирма Leyland. Но расход топлива шокирует — 15,5 литров керосина на один-единственный километр!

Все же, несмотря на усовершенствования, паровые автомобили второй половины XIX века оставались весьма неудобными для эксплуатации. Машинисту нужны были почти такие же знания и сноровка, как его коллегам на железной дороге. Один только старт парового автомобиля требовал большой ловкости и отнимал много времени. Запалив (хорошо если в безветренную погоду) пусковую горелку, нужно было отрегулировать подачу горючего и воздуха; прислушиваться, когда появится жужжание — признак испарения горючего, бульканье кипящей воды и свист пара. Потом следовало проверить давление пара при помощи стеклянной трубки, установленной на кронштейнах сбоку автомобиля. Когда по недосмотру машиниста давление в котле чрезмерно повышалось, трубка лопалась, извергала поток горячей воды; тогда водителю приходилось гасить горелку, ждать, пока машина остынет, вставлять новую трубку, доливать в котел воды и возобновлять церемонию зажигания. Между прочим, первое зеркало заднего вида появилось на американском паровом автомобиле марки «Локомобиль» для наблюдения не за дорогой, а за трубкой .

В пути машинист должен был следить за уровнем воды в котле, добавлять воду перед подъемами, а при спусках, пока машина работала вхолостую, накапливать пар, подкачивать велосипедным насосом воздух и топливо к горелке. Опасаясь пожара, автомобилисты присоединяли к котлу шланг, при необходимости служивший брандспойтом. Через каждые 30— 40 км нужно было заправлять котел, смазывать кривошипный механизм и другие части, время от времени удалять накипь, чистить горелку.

Заканчивая поездку, нельзя было просто поставить машину в гараж, заглушить двигатель и уйти домой. Машинист задувал главную горелку, выпускал часть воды из котла и снова заполнял его. Пусковую горелку оставляли горящей до утра, чтобы не мучиться снова с зажиганием.

Паровая машина была недостаточно надежна и практически недоступна для массового потребителя, но все же она сыграла важную роль в развитии автомобильной техники. Была доказана сама возможность механического передвижения, опробованы и усовершенствованы механизмы будущего автомобиля. От паровых автомобилей осталось и слово «шофер» (его раньше писали через два «ф»), что по-французски означает «кочегар». И хотя давно нет на автомобиле котла и топки, водителя и по сей день называют шофером.

В 1897году братья  Фрилан  Оскар и  Франсис Эдгар Стэнли организовали в Америке «массовый» выпуск паровиков — за первый год разошлось 200 таких машин! Позже права на производство паромобилей Stanley были куплены многими компаниями, в том числе и московским обществом «Дукс». Первые машины конструкции братьев Стэнли имели немало общего с велосипедами: колеса со спицами, пневматические шины, легкая трубчатая рама. Двигатель выбрасывал отработанный пар в атмосферу — так было проще и дешевле (не было конденсатора), но водяного бака объемом 77,5 литров хватало лишь на 64 километра пути. Рабочее давление в котле было поднято до 12 кг/см2, а сам котел был обернут двумя слоями проволоки и заключен в стальной кожух с теплоизоляцией из асбеста. Паромобиль Stanley развивал мощность в 6,5 л.с., а скорость, которая регулировалась изменением давления пара, достигала 45 км/ч. Керосин уже не лился рекой — на сотню километров требовалось «всего» 28 литров.

Позже паровики начали уступать место автомобилям с двигателем внутреннего сгорания. Однако первым в истории сухопутных заездов рубеж в 200 км/ч преодолел именно паровой автомобиль. Случилось это 26 января 1906 года, когда Фред Мариотт разогнал «Ракету» братьев Стэнли, Stanley-Rocket, до 205,44 км/ч — скорости, в то время недостижимой для обычных бензиновых автомобилей!

В начале XX века автомобили с ДВС почти полностью вытеснили паромобили. Почти, но не совсем! Паровыми двигателями продолжали оснащать грузовики, которым приходилось работать в тяжелых условиях при нехватке жидкого топлива. В России это было особенно актуально. Например, еще в 1874 году специалисты Мальцевского завода «усовершенствовали» колесный тягач английской фирмы Aveling & Porter, приспособив его для топки не углем, а дровами. Паровой тягач развивал тогда целых 10 л.с. и мог тащить за собой десять платформ с 16 тоннами груза.

А уже в советские времена в институте НАМИ занимались экспериментальными паромобилями на шасси 7-тонного грузовика ЯАЗ-200, которые работали на дровах, на буром угле или даже на торфе. Характеристики трехцилиндровой паровой машины были вполне привычными: мощность — 100 л.с., обороты — до 1250 в минуту. Габариты и масса были меньше, чем у дизеля с коробкой передач. Правда, эту экономию сводил на нет тяжеленный (около тонны) «котлоагрегат». А паровик НАМИ-018 был полноприводным. Функцию рычага КПП (самой коробки здесь, разумеется, не существовало) выполнял рычаг переключения отсечек парораспределительного механизма: предусматривались три отсечки «вперед» (на 25, 40 и 75% наполнения цилиндра) и одна «назад». Педалей в кабине было три, как обычно, но сцепление требовалось выжимать только для включения понижающей передачи.

Грузовик (первый образец был бортовым) перевозил шесть тонн, однако максимальная скорость не впечатляла: в отчете указано, что она равнялась… всего-то 42,3 км/ч. При этом на сто километров пути уходило от 350 до 450 кг (это не опечатка) дров — полный бункер. Все эти дрова надо было напилить, наколоть, загрузить, разжечь котел… В холода еще и сливать воду (200 литров!) на ночь, чтобы она не превратилась в лед, а утром опять заливать.

Вслед за опытным образцом были построены еще два (в конце 1949 и середине 1950 года): внешне они отличались более скругленными кабинами, с передка исчез массивный хромированный молдинг с «клювом». Любопытно, что оба экземпляра испытывались и как грузовики, и как тягачи-лесовозы: именно поэтому в исторической литературе можно встретить их фотографии как с бортовым кузовом, так и с лесовозным прицепом.

Испытания проходили в условиях, приближенных к боевым. Морозы доходили до 40 градусов, вода заливалась из ближайшего озера. Напоследок машины даже совершили пробег по маршруту Москва—Ярославль и обратно: всего же одна из них прошла 16 тысяч километров, другая — 26 тысяч. Однако, как отмечалось в статьях того времени, «в порожнем состоянии вследствие большого веса, приходящегося на переднюю ось, паровой автомобиль обладает ухудшенной проходимостью». Судя по всему, на лесных дорогах машины попросту вязли.

Поэтому в 1953 году построили четвертый экземпляр — полноприводный лесовоз НАМИ-018. Его привод был подключаемым благодаря оригинальной «раздатке»: когда задние колеса буксовали, начинали «грести» передние. Как утверждают источники тех лет, по проходимости НАМИ-018 не уступал самому мощному дизельному лесовозу того времени МАЗ-501.

 

Будущее паровых автомобилей.

Рассматривать современные моторы под капотами автомобилей – сплошное удовольствие. Они мощные, компактные, тихие и экономичные: современный дизель потребляет менее 6 л топлива на 100 км при рабочем объеме 2 л и бешеном крутящем моменте. И все же КПД даже самых технологичных дизельных моторов с технологией Twinturbo не превышает 33%. Атмосферные бензиновые ДВС еще менее эффективны – их КПД с трудом дотягивает до 25%.

Температура газов в камере сгорания четырехтактного ДВС Отто достигает 2000˚С. Внутренние стенки цилиндра и рабочая поверхность поршня нагреваются до 1500˚С. Часть тепловой энергии уходит из камеры сгорания на четвертом такте вместе с выхлопными газами. Чтобы быстро отвести тепло и охладить камеру сгорания до оптимальной температуры, применяется мощная система охлаждения, неисправность которой грозит поломкой двигателя. Перегрев – проклятие автомехаников, работающих с высокооборотными спортивными моторами. Температура внутри кокпита гоночного болида во время заездов достигает 70˚С, а некоторые узлы двигателя раскаляются докрасна. Выходит, что автомобиль куда более эффективен в качестве калорифера, нежели в качестве транспортного средства.

Многие думали и думают до сих пор о том, как превратить тепло двигателя во вращение коленчатого вала, вместо того чтобы рассеивать его в атмосферу. Изобретатель Брюс Кроуэр  предположил, что в концепции Отто не хватает еще двух тактов – рабочего и холостого. Но источником энергии для них должна служить не очередная порция топливовоздушной смеси, а избыточная температура! В качестве рабочего тела он применил простую воду. При атмосферном давлении вода, превращаясь в пар, увеличивает свой объем в 1600 раз и обладает колоссальной энергией. В двигателе Кроуэра вода впрыскивается в камеру сгорания в виде мельчайших капелек под давлением около 150 атм., когда заканчивается четвертый такт цикла Отто и поршень возвращается в исходное положение. Попадая на раскаленную поверхность поршня и гильзы цилиндра, вода превращается в пар и толкает поршень вниз, совершая рабочий пятый такт. На шестом такте отработанный пар удаляется из камеры сгорания через выпускной клапан. Таким образом, Кроуэр заставляет уже сгоревшее топливо еще раз совершить полезную работу, используя его «тепловой фантом». Эту концепцию изобретатель назвал Steam-o-Lene.

Цикл Кроуэра отличается от традиционного цикла Отто не только количеством тактов, но и отношением количества рабочих тактов к их общему числу. Так, у Отто это отношение составляет 1:4, а у Кроуэра – 1:3, дополнительные 40% полезной работы совершаются на неизменном количестве топлива. На четвертом такте раскаленные выхлопные газы не удаляются из камеры сгорания полностью, а сжимаются поршнем, создавая очень высокое давление. Вода в такой среде испаряется быстрее и равномернее. Далее отработанный пар поступает в конденсатор, где охлаждается и снова превращается в воду. Часть остаточного тепла используется для обогрева салона автомобиля.

Преимущества Steam-o-Lene перед традиционными четырехтактными ДВС очевидны. Во-первых, радикально решается проблема эффективного охлаждения внутренних стенок камеры сгорания и специальная система охлаждения весом более 100 кг оказывается не у дел. Отсутствие радиатора позволяет дизайнерам уменьшить коэффициент аэродинамического сопротивления кузова автомобиля за счет отказа от воздухозаборников и решетки радиатора. А это один из самых существенных факторов, влияющих на расход топлива при скоростях выше 60 км/ч. Во-вторых, внутреннее охлаждение позволяет существенно, на 30–50%, форсировать двигатели по степени сжатия, избежав при этом детонации. Степень сжатия для бензиновых модификаций может быть увеличена до 14–16:1, а для дизельных – до 25–35:1. Это резко повышает эффективность сгорания топливовоздушной смеси (на 40% по сравнению с циклом Отто), тем самым улучшая экологические характеристики двигателя. Размеры и масса мотора могут быть снижены без ущерба для динамики авто.

Два рабочих такта из шести в цикле Кроуэра позволяют значительно снизить скорость вращения коленвала и получить ровную и насыщенную «полку» крутящего момента с самых низких оборотов. Steam-o-Lene может отлично работать на низкокачественном дешевом топливе без антидетонационных присадок. Топливом могут служить биоэтанол, дизель, природный газ и даже топочный мазут. Относительно низкий температурный режим в камере сгорания резко снижает образование вредной двуокиси азота. А между тем системы фильтрации и нейтрализации двуокиси азота в современных автомобилях весьма дорогостоящи. Существует предположение, что горячий пар может предотвращать появление нагара на клапанах и стенках камеры сгорания, очищая их во время «парового» такта подобно пароочистителю. Но для подтверждения этого эффекта требуются длительные испытания прототипа.

Концепция 6-тактного Steam-o-Lene с «паровым» рабочим тактом может быть модифицирована и дополнена за счет углубленного исследования термодинамики процесса. Также кажется перспективной установка на двигатель турбокомпаунда – системы, в которой вслед за турбиной нагнетателя в выпускном тракте следует силовая турбина, сообщающая дополнительный крутящий момент коленчатому валу двигателя посредством гидромуфты. Турбокомпаунд мог бы повысить эффективность работы двигателя еще на 10–15%. Некоторые специалисты, анализировавшие концепцию 6-тактного ДВС с впрыском воды, отмечают, что теоретически возможны даже два последовательных паровых такта. Если это подтвердится в ходе испытаний, то Steam-o-Lene может стать уже 8-тактным и еще более экономичным.

 

Разумеется, концепция Кроуэра не лишена недостатков. Основная проблема – это замерзание воды зимой. Добавление антифриза может негативно сказаться на эффективности испарения и экологических параметрах двигателя. Проблему могла бы решить термоизоляция водяного резервуара и его предварительный подогрев от аккумулятора. Но как быть, если автомобиль длительное время находится на открытом воздухе?

Другая проблема – необходимость установки на автомобиле дополнительного оборудования для хранения и конденсации воды. Правда, масса его обещает быть незначительной: в рабочем контуре пар и вода будут находиться при атмосферном давлении и максимальной температуре чуть более 100˚С, что позволяет использовать вместо металла легкие пластмассы. Не исключено, что часть воды будет попадать в моторное масло и это потребует установки специального сепаратора для ее отделения. Впрочем, давно отработанные технологии смазки паровых турбин для нужд энергетики имеют целый ряд готовых решений этой проблемы. Для изготовления клапанов, поршня и гильзы цилиндра, скорее всего, потребуются нержавеющие материалы, в частности керамика.

Steam-o-Lene не может работать полноценно сразу после запуска – ему нужно время для разогрева рабочих поверхностей камеры сгорания до 450–500˚С. Несколько минут он работает как обычный 4-тактный ДВС, а затем переходит на полный рабочий цикл. Перед остановкой мотор тоже должен некоторое время поработать в 4-тактном режиме для полного удаления пара из цилиндра. Разумеется, вода должна быть дистиллированной: при использовании обычной на седле клапана со временем образуется твердая накипь, обладающая высокими абразивными свойствами. При серийном производстве двигателей цикла Кроуэра придется наладить целую инфраструктуру производства и реализации дистиллированной воды.

 

 

“Немецкие инженеры оставили на месте систему охлаждения двигателя и добавили в конструкцию ряд сложных вспомогательных компонентов, в том числе теплообменник, отбирающий тепловую энергию выхлопных газов, герметичный паровой котел и паровую турбину, связанную с коленчатым валом двигателя ременным приводом. По утверждению разработчиков, использование «парового двигателя» Turbosteamer дает прирост мощности и крутящего момента на 10% и экономию топлива около 15%. Вес дополнительных компонентов превышает 100 кг. Инженерное решение Steam-o-Lene выглядит намного изящнее немецкого: вместо усложнения системы Кроуэр предлагает ее максимальное упрощение. Шеститактный Steam-o-Lene легче своего четырехтактного аналога даже с учетом массы воды и конденсатора. Немецкая разработка, напротив, увеличивает общий вес двигателя. Наконец, заявленный прирост эффективности Turbosteamer в два с половиной раза ниже, чем у Steam-o-Lene: 15% против 40”[3].

 

Заключение.

 

В настоящее время уже видно, что паровой автотранспорт- это часть истории. Со времени создания последнего уже прошло более полувека. Хотя для своего времени они были выдающимися изобретениями. Несмотря на яростное сопротивление они показали надобность транспорта как общественного так и личного. На них били рекорды скорости и мощности. Их боялись и ими восхищались. За почти два века паровой транспорт прошел путь от «повозки» до многотонного грузовика, от скорости в 3,75 км/с до 200 милль/с.

Но настоящее этой техники живет при помощи многочисленных энтузиастов, которые верят в то, что время парового транспорта еще не ушло и ищут пути для решения задачи превзойти обычный для нас бензиновый двигатель и дизель.

Список использованной литературы.

1. Научно-технический энциклопедический словарь.

2. Энциклопедия Кольера. — Открытое общество. 2000.

3. Автоновости с улиц Челябинска         (www.ch74.ru/main/447-parovojj-dvigatel-tekhnologija-steam-o-lene..).

4. Газета «АВТОРЕВЮ» 2005 год / №7 (332) .

5. Автомобиль за 100 лет.Долматовский Ю.А.-.:М.Знание, 1986,-210с.

 

 


Дата добавления: 2018-02-15; просмотров: 617; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!