Область определения функции, в которой есть дробь

Преобразование графиков, симметрия относительно прямой, растяжение и сжатие.

Пусть задан график функции y = f(x). Чтобы построить график функции

  1. y = mf(x), где m > 0 и m ≠ 1, нужно ординаты точек заданного графика умножить на m. Такое преобразование называется растяжением от оси x c коэффициентом m, если m > 1, и сжатием к оси x, если 0 < m < 1.
  2. y = −f(x) получается из графика функции f(x) преобразованием симметрии относительно оси x. (Преобразование симметрии - зеркальное отражение относительно прямой.)
  3. y = f(x) + n, получается из графика функции f(x) параллельным переносом последнего вдоль оси ординат на n единиц вверх, если n > 0 и, соответственно на |n| единиц вниз, если n < 0.
  4. y = f(kx), где k > 0 и k ≠ 1. Искомый график функции получается из заданного сжатием с коэффициентомk к оси y (если 0 < k < 1 указанное "сжатие" фактически является растяжением с коэффициентом 1/k)
  5. y = f(−x) получается из графика функции f(x) преобразованием симметрии относительно оси y
  6. y = f(x + l) получается из графика функции f(x) параллельным переносом последнего на l единиц влево, если l > 0 и, соответственно на |l| единиц вправо, если m < 0.

Функции одной переменной . Актуализирую два особо нужных сейчас термина: «икс» – независимая переменная или АРГУМЕНТ, «игрек» – зависимая переменная или ФУНКЦИЯ. При этом функцию можно обозначать как через «игрек», так равноценно и через «эф от икс», например:

Сжатие (растяжение) графика к (от) оси ординат.
Симметричное отображение графика относительно оси

Первая группа действий связана с умножением АРГУМЕНТА функции на число. Для удобства я разобью правило на несколько пунктов:

Сжатие графика функции к оси ординат

Это случай когда АРГУМЕНТ функции умножен на число, бОльшее единицы.

Правило: чтобы построить график функции , где , нужно график функции сжать к оси в раз.

Пример 1

Построить график функции .

Сначала изобразим график синуса, его период равен :

К слову, чертить графики тригонометрических функций вручную – занятие кропотливое, поскольку

Теперь поиграем на бесконечно длинном баяне. Мысленно возьмём синусоиду в руки и сожмём её к оси в 2 раза:

То есть, график функции получается путём сжатия графика к оси ординат в два раза. Логично, что период итоговой функции тоже уполовинился:

В целях самоконтроля можно взять 2-3 значения «икс» и устно либо на черновике выполнить подстановку:

 

Пример 2

Построить график функции

«Чёрная гармошка» сжимается к оси в 3 раза:

Итоговый график проведён красным цветом.
Исходный период косинуса закономерно уменьшается в три раза: (отграничен жёлтыми точками).

Растяжение графика функции от оси ординат

Это противоположное действие, теперь баян не сжимается, а растягивается.
Случай имеет место, когда АРГУМЕНТ функции умножается на число .

Правило: чтобы построить график функции , где , нужно график функции растянуть от оси в раз.

Продолжим мучить синус:

Пример 3

Построить график функции

Берём в руки нашу «бесконечную гармошку»:

И растягиваем её от оси в 2 раза:

То есть, график функции получается путём растяжения графика от оси ординат в два раза. Период итоговой функции увеличивается в 2 раза: , он толком даже не вместился на данный чертёж.

Симметричное отображение графика функции относительно оси ординат

АРГУМЕНТ функции меняет знак.

Правило: чтобы построить график функции , нужно график отобразить симметрично относительно оси .

Пример 5

Построить график функции

График функции получается путём симметричного отображения графика относительно оси ординат:


Как видите, всё просто.

Если при умножении аргумента на число значение параметра отрицательно и не равно минус единице, то построение выполняется в два шага.

 

Растяжение (сжатие) графика ВДОЛЬ оси ординат.
Симметричное отображение графика относительно оси абсцисс

Структура второй части статьи будет очень похожа.

1) Если ФУНКЦИЯ умножается на число , то происходит растяжение её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции растянуть вдоль оси в раз.

2) Если ФУНКЦИЯ умножается на число , то происходит сжатие её графика вдоль оси ординат.

Правило: чтобы построить график функции , где , нужно график функции сжать вдоль оси в раз.

Пример 11

Построить графики функций .

Берём синусоиду за макушку/пятки:

И вытягиваем её вдоль оси в 2 раза:

Период функции не изменился и составляет , а вот значения (все, кроме нулевых) увеличились по модулю в два раза, что логично – ведь функция умножается на 2, и область её значений удваивается: .

Теперь сожмём синусоиду вдоль оси в 2 раза:

Аналогично, период не изменился, но область значений функции «сплющилась» в два раза: .

Нет, у меня нет какого-то пристрастного отношения к синусоиде, просто я хотел продемонстрировать, чем отличаются графики функций (Примеры №№1,3) от только что построенных собратьев . Постарайтесь ещё раз проанализировать и качественнее понять эти элементарные случаи. Даже минимальные знания о преобразованиях графиков окажут вам неоценимую помощь в ходе решения других задач высшей математики!

 

 

Подготовка к контрольной.

Область определения функции, в которой есть дробь

Итак, нам надо найти все допустимые значения икса для какой-то конкретной функции. Самый широкий набор значений, как правило - это все действительные числа. От -∞ до+∞. Перебирать все возможные числа мы не будем, да...) В математике поступают по-другому. Работаем в два этапа.

На первом этапе ищем в функции операции, которые могут оказаться недопустимыми при каких-то значениях икса. Т.е. ищем потенциально опасные операции.

На втором этапе определяем иксы, которые не приводят к запретному действию в этих самых операциях. Это и будет область определения функции.

Если эти этапы не очень понятны, читаем дальше, на примерах всё куда яснее будет.

Что такое потенциально опасные операции? Это операции, в которых существуют принципиальные ограничения. Не пугайтесь, таких операций всего ничего и вы их прекрасно знаете). Перечисляю:

До 9-го класса включительно:

1. Деление. Нельзя делить на ноль.

2. Извлечение корня. Нельзя извлекать корни чётной степени из отрицательных чисел.

В выпускных классах и ВУЗах:

3. Логарифмы. Ограничения в логарифмах: если logab = c, то а>0, a≠1, b>0.

4. Тригонометрия. Ограничения в тригонометрии: значения углов, для которых тангенс и котангенс не существуют, ограничения на выражения под знаком арксинуса, арккосинуса.

 

Предположим, дана функция, содержащая некоторую дробь . Как вы знаете, на ноль делить нельзя: , поэтому те значения «икс», которые обращают знаменатель в ноль – не входят в область определения данной функции.

Не буду останавливаться на самых простых функциях вроде и т.п., поскольку все прекрасно видят точки, которые не входят в их области определения. Рассмотрим более содержательные дроби:

Пример 1

Найти область определения функции

Решение: в числителе ничего особенного нет, а вот знаменатель должен быть ненулевым. Давайте приравняем его к нулю и попытаемся найти «плохие» точки:

Полученное уравнение имеет два корня: . Данные значения не входят в область определения функции. Действительно, подставьте или в функцию и вы увидите, что знаменатель обращается в ноль.

Ответ: область определения:

Запись читается так: «область определения – все действительные числа за исключением множества, состоящего из значений ». Напоминаю, что значок обратного слеша в математике обозначает логическое вычитание, а фигурные скобки – множество. Ответ можно равносильно записать в виде объединения трёх интервалов:
.

Пример 3

Найти область определения функции

Решение: попытаемся найти точки, в которых знаменатель обращается в ноль. Для этого решим квадратное уравнение:

Дискриминант получился отрицательным, а значит, действительных корней нет, и наша функция определена на всей числовой оси.

Ответ: область определения:

 

Определение.

Областью значений функции y = f(x) называется множество всех значений функции, которые она принимает при переборе всех x из области определения .

Пример.

Определите множество значений функции на интервале (-2; 2).

Решение.

Найдем точки экстремума функции, попадающие на промежуток (-2; 2):

Точка x = 0 является точкой максимума, так как производная меняет знак с плюса на минус при переходе через нее, а график функции от возрастания переходит к убыванию.

есть соответствующий максимум функции.

Выясним поведение функции при x стремящемся к -2 справа и при xстремящемся к 2 слева, то есть, найдем односторонние пределы:

Что мы получили: при изменении аргумента от -2 к нулю значения функции возрастают от минус бесконечности до минус одной четвертой (максимума функции при x = 0), при изменении аргумента от нуля к 2 значения функции убывают к минус бесконечности. Таким образом, множество значений функции на интервале (-2; 2) есть .

 

Как найти область значения функции y=3x(квадрат)-6x +1

1 способ.

Найдем x0. x0=-b/(2a)=-(-6)/(2*3)=1

Найдем значение y при x=1.

y=3*1^2-6*1+1=3-6+1=-2.

Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)

2 способ.

Найдем производную функции. y'=6x-6. Приравним производную функции к нулю.

6x-6=0. Найдем точки экстремума. 6x=6, x=1. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то x=1- это точка минимума. Найдем значение функции наданной точке. y=3*1^2-6*1+1=3-6+1=-2. Т.к. y=3x^2-6x+1 - это парабола, ветви направлены вверх, то область значений: [-2;+бесконечности)

 

P.S. Если вы ещё не прошли производную, воспользуйтесь первым способом.

 


Дата добавления: 2021-03-18; просмотров: 88; Мы поможем в написании вашей работы!

Поделиться с друзьями:




Мы поможем в написании ваших работ!