Уравнение поверхности в пространстве.



 

    Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости.

    Определение. Плоскостью называется поверхность, все точки которой удовлетворяют общему уравнению:

Ax + By + Cz + D = 0,

где А, В, С – координаты вектора -вектор нормали к плоскости.

 

    Возможны следующие частные случаи:

А = 0 – плоскость параллельна оси Ох

В = 0 – плоскость параллельна оси Оу

С = 0 – плоскость параллельна оси Оz

D = 0 – плоскость проходит через начало координат

А = В = 0 – плоскость параллельна плоскости хОу

А = С = 0 – плоскость параллельна плоскости хОz

В = С = 0 – плоскость параллельна плоскости yOz

А = D = 0 – плоскость проходит через ось Ох

В = D = 0 – плоскость проходит через ось Оу

С = D = 0 – плоскость проходит через ось Oz

А = В = D = 0 – плоскость совпадает с плоскостью хОу

А = С = D = 0 – плоскость совпадает с плоскостью xOz

В = С = D = 0 – плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки.

 

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

    Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат.

    Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы  были компланарны.                  ( ) = 0

 

    Таким образом,        

Уравнение плоскости, проходящей через три точки:

 

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

 

    Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор .

Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору .

    Векторы и вектор  должны быть компланарны, т.е.

( ) = 0

    Уравнение плоскости:

 

Уравнение плоскости по одной точке и двум векторам,

 коллинеарным плоскости.

 

    Пусть заданы два вектора  и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы  должны быть компланарны.

    Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали.

 

    Теорема.Если в пространстве задана точка М00, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид: A ( x – x 0 ) + B ( y – y 0 ) + C ( z – z 0 ) = 0.

 

    Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор  - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение     × = 0

Таким образом, получаем уравнение плоскости

 Теорема доказана.

 

Уравнение плоскости в отрезках.

    Если в общем уравнении Ах + Ву + Сz + D = 0 поделить обе части на (-D)

,

заменив , получим уравнение плоскости в отрезках:

    Числа a, b, c являются точками пересечения плоскости соответственно с осями х, у, z.

 

Уравнение плоскости в векторной форме.

 

 где

- радиус- вектор текущей точки М(х, у, z),

 - единичный вектор, имеющий направление, перпендикуляра, опущенного на плоскость из начала координат.

a, b и g - углы, образованные этим вектором с осями х, у, z.

p – длина этого перпендикуляра.

    В координатах это уравнение имеет вид: xcosa + ycosb + zcosg - p = 0.

 

Расстояние от точки до плоскости.

    Расстояние от произвольной точки М00, у0, z0) до плоскости Ах+Ву+Сz+D=0 равно:   

 

    Пример. Найти уравнение плоскости, зная, что точка Р(4; -3; 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

   

Таким образом, A = 4/13; B = -3/13; C = 12/13, воспользуемся формулой:

A(x – x0) + B(y – y0) + C(z – z0) = 0.

 

    Пример. Найти уравнение плоскости, проходящей через две точки P(2; 0; -1) и Q(1; -1; 3) перпендикулярно плоскости 3х + 2у – z + 5 = 0.

    Вектор нормали к плоскости 3х + 2у – z + 5 = 0 параллелен искомой плоскости.

    Получаем:

 

 

    Пример. Найти уравнение плоскости, проходящей через точки А(2, -1, 4) и

В(3, 2, -1) перпендикулярно плоскости х + у + 2z – 3 = 0.

    Искомое уравнение плоскости имеет вид: Ax + By + Cz + D = 0, вектор нормали к этой плоскости (A, B, C). Вектор (1, 3, -5) принадлежит плоскости. Заданная нам плоскость, перпендикулярная искомой имеет вектор нормали (1, 1, 2). Т.к. точки А и В принадлежат обеим плоскостям, а плоскости взаимно перпендикулярны, то

    Таким образом, вектор нормали (11, -7, -2). Т.к. точка А принадлежит искомой плоскости, то ее координаты должны удовлетворять уравнению этой плоскости, т.е. 11×2 + 7×1 - 2×4 + D = 0; D = -21.

    Итого, получаем уравнение плоскости: 11x - 7y – 2z – 21 = 0.

 

    Пример. Найти уравнение плоскости, зная, что точка Р(4, -3, 12) – основание перпендикуляра, опущенного из начала координат на эту плоскость.

    Находим координаты вектора нормали = (4, -3, 12). Искомое уравнение плоскости имеет вид: 4x – 3y + 12z + D = 0. Для нахождения коэффициента D подставим в уравнение координаты точки Р:

16 + 9 + 144 + D = 0          D = -169

    Итого, получаем искомое уравнение: 4x – 3y + 12z – 169 = 0

 

 

Пример. Даны координаты вершин пирамиды А1(1; 0; 3), A2(2; -1; 3), A3(2; 1; 1), A4(1; 2; 5).

1) Найти длину ребра А1А2.

2) Найти угол между ребрами А1А2 и А1А4.

3) Найти угол между ребром А1А4 и гранью А1А2А3.

Сначала найдем вектор нормали к грани А1А2А3  как векторное произведение векторов и .

= (2-1; 1-0; 1-3) = (1; 1; -2);

    Найдем угол между вектором нормали и вектором .

-4 – 4 = -8.

Искомый угол g между вектором и плоскостью будет равен g = 900 - b.

4) Найти площадь грани А1А2А3.

5) Найти объем пирамиды.

 (ед3).

6) Найти уравнение плоскости А1А2А3.

Воспользуемся формулой уравнения плоскости, проходящей через три точки.

2x + 2y + 2z – 8 = 0      x + y + z – 4 = 0.


Дата добавления: 2020-12-12; просмотров: 56; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!