Что такое канонический вид уравнения?
Понятие алгебраической линии и её порядка
Линию на плоскости называют алгебраической, если в аффинной системе координат её уравнение имеет вид
, где
– многочлен, состоящий из слагаемых вида
(
– действительное число,
– целые неотрицательные числа).
Как видите, уравнение алгебраической линии не содержит синусов, косинусов, логарифмов и прочего функционального бомонда. Только «иксы» и «игреки» в целых неотрицательных степенях.
Далее под словом «линия» по умолчанию будет подразумеваться алгебраическая линия на плоскости
Порядок линии равен максимальному значению
входящих в него слагаемых.
По соответствующей теореме, понятие алгебраической линии, а также её порядок не зависят от выбора аффинной системы координат, поэтому для лёгкости бытия считаем, что все последующие выкладки имеют место быть в декартовых координатах
.
Общее уравнение линии второго порядка имеет вид
, где
– произвольные действительные числа (
принято записывать с множителем-«двойкой»), причём коэффициенты
не равны одновременно нулю.
Если
, то уравнение упрощается до
, и если коэффициенты
одновременно не равны нулю, то это в точности общее уравнение «плоской» прямой, которая представляет собой линию первого порядка.
Многие поняли смысл новых терминов, но, тем не менее, в целях 100%-го усвоения материала сунем пальцы в розетку. Чтобы определить порядок линии, нужно перебрать все слагаемые её уравнения и у каждого из них найти сумму степеней входящих переменных.
Например:
слагаемое
содержит «икс» в 1-й степени;
слагаемое
содержит «игрек» в 1-й степени;
в слагаемом
переменные отсутствуют, поэтому сумма их степеней равна нулю.
Далее из полученных чисел выбирается максимальное значение, в данном случае единица, – это и есть порядок линии.
Теперь разберёмся, почему уравнение
задаёт линию второго порядка:
слагаемое
содержит «икс» во 2-й степени;
у слагаемого
сумма степеней переменных: 1 + 1 = 2;
слагаемое
содержит «игрек» во 2-й степени;
все остальные слагаемые – меньшей степени.
Максимальное значение: 2
Если к нашему уравнению дополнительно приплюсовать, скажем,
, то оно уже будет определять линию третьего порядка. Очевидно, что общий вид уравнения линии 3-го порядка содержит «полный комплект» слагаемых, сумма степеней переменных в которых равна трём:
, где коэффициенты
не равны одновременно нулю.
В том случае, если добавить одно или несколько подходящих слагаемых, которые содержат
, то речь уже зайдёт о линии 4-го порядка, и т.д.
С алгебраическими линиями 3-го, 4-го и более высоких порядков нам придется столкнуться ещё не раз, в частности, при знакомстве с полярной системой координат.
Однако вернёмся к общему уравнению
и вспомним его простейшие школьные вариации. В качестве примеров напрашивается парабола
, уравнение которой легко привести к общему виду
, и гипербола
с эквивалентным уравнением
. Однако не всё так гладко….
Существенный недостаток общего уравнения состоит в том, что почти всегда не понятно, какую линию оно задаёт. Даже в простейшем случае
не сразу сообразишь, что это гипербола. Такие расклады хороши только на маскараде, поэтому в курсе аналитической геометрии рассматривается типовая задача приведения уравнения линии 2-го порядка к каноническому виду.
Что такое канонический вид уравнения?
Это общепринятый стандартный вид уравнения, когда в считанные секунды становится ясно, какой геометрический объект оно определяет. Кроме того, канонический вид очень удобен для решения многих практических заданий. Так, например, по каноническому уравнению
«плоской» прямой, во-первых, сразу понятно, что это прямая, а во-вторых – элементарно просматривается принадлежащая ей точка
и направляющий вектор
.
Очевидно, что любая линия 1-го порядка представляет собой прямую. На втором же этаже нас ждёт уже не вахтёр, а гораздо более разнообразная компания из девяти статуй:
Дата добавления: 2021-01-20; просмотров: 305; Мы поможем в написании вашей работы! |
Мы поможем в написании ваших работ!
