Элементы дисперсионного анализа.



Дисперсионный анализ – это статистический метод анализа результатов наблюдений, зависящих от различных, одновременно действующих факторов, выбор наиболее важных факторов и оценка их влияния. Дисперсионный анализ находит применение в различных областях науки и техники.

Известно, что многие признаки и свойства живых организмов находятся под влиянием различных факторов: наследственности, условий среды, внутренних факторов организма, искусственного отбора. Степень и направленность воздействия различных факторов неодинаковы, поэтому важно определить долю влияния отдельных факторов на изменчивость признака. Для решения подобной задачи используют метод дисперсионного анализа, разработанный Р.Фишером.

Сущность дисперсионного анализа состоит в установлении роли отдельных факторов в изменчивости признака.

 

 

В зависимости от количества изучаемых факторов различают однофакторный и многофакторный дисперсионный анализ. Рассмотрим подробнее метод однофакторного дисперсионного анализа.

 

Однофакторный дисперсионный анализ.

Предположим, что имеется  выборок с объемами , , , и наблюдения можно представить в виде , где - номер наблюдения в выборке; - номер выборки; - групповые математические ожидания;  - случайные ошибки с =0, о которых предполагается, что они независимы и одинаково расположены.

Подобная ситуация возникает, когда существует некий фактор, принимающий  различных значений (называемых уровнями), и каждая группа объектов, чьи признаки мы примеряем, подвергается воздействию определенного уровня этого фактора. Методы математической статистики, изучающие воздействие одного фактора на объекты и их признаки, называют в совокупности однофакторным анализом.

Предполагается, что ошибки нормально распределены: . Тогда можно изучать влияние фактора, вычисляя дисперсии некоторых величин. Совокупность этих методов называют однофакторным дисперсионным анализом.

Основной гипотезой, нуждающейся в проверке, является гипотеза о равенстве групповых средних . Иными словами, проверяют гипотезу о том, что фактор вообще не влияет на наблюдения. В случае нормальных ошибок ее можно проверить, вычислив две разные оценки дисперсии.

  Рассмотрим группу экспериментальных животных, подвергнутых ультрафиолетовому облучению. В процессе эксперимента измерялась температура тела животных. Результаты измерений были занесены в таблицу:

 

№ испытания

Уровень фактора А

(мощность ультрафиолетового облучения)

А1 А2 А3
  1   2   3   4   37,4   37,3   37,0   36,9   37,8   37,9   37,5   37,4   38,0   37,9   38,4   38,3
37,15 37,65 38,15

   

 

 Физический фактор А (ультрафиолетовое излучение) имеет  постоянных уровней (3 различных мощности облучения). На всех уровнях распределения случайной величины Х (температуры тела животного) предполагается нормальным, а дисперсии одинаковыми, хотя и неизвестными.

В данном эксперименте число проведенных наблюдений при действии каждого из уровней фактора одинаково.

Все значения величины Х, наблюдаемые при каждом фиксированном уровне фактора Аj, составляют группу, и в последней строке таблицы представлены соответствующие выборочные групповые средние, вычисленные по формуле

                                      .

Здесь n – число испытаний,  – номер столбца,  - номер строки, в которой расположено данное значение случайной величины. Общая средняя арифметическая всех  наблюдений находится как

                                       .

Введем следующие понятия:

Факторная сумма квадратов отклонений групповых средних от общей средней , которая характеризует рассеивание «между группами» (т.е. рассеивание за счет исследуемого фактора):

                                       ,

Остаточная сумма квадратов отклонений наблюдаемых значений группы от своей групповой средней , которая характеризует рассеивание «внутри групп» (за счет случайных причин):

                    .

Общая сумма квадратов отклонений наблюдаемых значений от общей средней :

                                        ,

     Можно доказать следующее равенство:

                                     .

   С помощью ,  производится оценка общей, факторной и остаточной дисперсий:

                                        ,

                                        ,

                                         .

       В основе однофакторного дисперсионного анализа лежит тесная связь между различием в групповых средних  и соотношением между двумя видами дисперсий – факторной, которая характеризует влияние фактора А на величину Х, и остаточной, которая характеризует влияние случайных причин. Сравнивая факторную дисперсию с остаточной по величине их отношения судят, насколько сильно проявляется влияние фактора.

  Для сравнения двух дисперсий используют показатель критерия Фишера               .

При этом при заданном уровне значимости проверяют нулевую гипотезу о равенстве факторной и остаточной дисперсии (изучаемый фактор не вызывает изменчивости признака) при конкурирующей гипотезе об их неравенстве (изучаемый фактор вызывает изменчивость признака).

По таблице критических значений распределения Фишера – Снедекора  (см. приложение 6) при уровне значимости, равном половине заданного уровня , находят критическое значение . Здесь . Если , нулевую гипотезу считают согласующейся с результатами наблюдений. Если , то эту гипотезу отвергают в пользу конкурирующей.

Замечание. Если окажется, что , следует сделать вывод об отсутствии влияния фактора А на Х.

    Если проверка покажет значимость различий между  и ,следует сделать вывод о существенном влиянии фактора А на Х.

    Обычно для упрощенная расчетов фактурную и остаточную дисперсии рассчитывают не по экспериментальным значениям  величины Х, а по значениям , где постоянная С представляет собой произвольное число, близкое к среднему значению  всех результатов наблюдений.

     Вернемся к нашему примеру. Вычтем из всех значений  постоянное число С=37,5 близкое к общему среднему =37,51 и составим таблицу:

 

Общая средняя будет равна                  

Определим значения ,         

              

Определим значения факторной и остаточной дисперсий:

,

.

Так как , следует проверить значимость их различия. Найдем экспериментальное значение критерия:

.

Сравним его с критическим значением распределения Фишера – Снедекора для уровня значимости 0,05 (см. приложение 6):

.

Поскольку  можно утверждать, что при уровне значимости

=0,05 рассматриваемый физический фактор оказывает влияние на температуру тела животного.

   Критерий Фишера указывает на влияние изучаемого фактора (если ) на изменчивость признака. Однако он не указывает на силу влияния этого фактора. В качестве показателя силы влияния фактора на изменчивость признака используют величину :

                                   .

    Оценим силу влияния ультрафиолетового облучения на повышение температуры тела животных:

                                         или  80,5%

    Таким образом, влияние ультрафиолетового облучения на повышение температуры тела животных составляет 80,5%, а 19,5% обусловлены случайными причинами.

 


Дата добавления: 2019-07-15; просмотров: 271; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!