Расчет основных рабочих элементов установки кондиционирования воздуха и подбор оборудования.



4.1. Фильтр.

Для проектируемой системы центрального кондиционирования воздуха, с расходом 54240 кг/ч, выбираем кондиционер КТЦ60, с масляным самоочищающимся фильтром.

Характеристики фильтра:

площадь рабочего сечения - 6,31 м2

удельная воздушная нагрузка – 10000 м3 ч на 1м2

максимальное сопротивление по воздуху ~10 кгс/м2

количество заливаемого масла – 585 кг

электродвигатель АОЛ2-21-4, N=1,1 кВт, n=1400 об/мин

4.2. Камера орошения.

Расчет:

1. Выбор камеры орошения по производительности воздуха:

м3/ч (4.1)

Принимаем форсуночную двухрядную камеру орошения типа Кт длинной 1800мм.

Конструктивные характеристики:

номинальная производительность по воздуху 60 тыс. м3/ч

высота и ширина сечения для прохода воздуха 2003х3405 мм

площадь поперечного сечения 6,81 м2

номинальная весовая скорость воздуха в поперечном сечении 2,94 кгс/(м2 °С)

общее число форсунок при плотности ряда 24шт/м2 ряд) – 312 шт./м2

2. Определяем массовую скорость воздуха в поперечном сечении камеры орошения:

 , кг/(м2с) (4.2)

3. Определяем универсальный коэффициент эффективности:

 (4.3)

Согласно [3] выбираем коэффициент орошения В, коэффициент полного орошения Е и диаметр выпускного отверстия форсунок:

В=1,8

Е=0,95

Ø=3,5 мм

Так как (pv) < 3 кг/(м2 с), то для Е´ вводим поправочный коэффициент 0,96:

Е=0,96х0,95=0,91

5. Вычисляем начальную и конечную температуру воды twн twк , совместно решая систему уравнений:

twн = 6,1°С

twк = 8,5°С

6. Вычисляем массовый расход воды:

Gw = BxG = 1,8х54240 = 97632 кг/ч (4.4)

7. Определяем пропускную способность одной форсунки:

кг/ч (4.5)

8. По диаметру выпускного отверстия и пропускной способности форсунки определяем давление воды перед форсункой, согласно [3]:

Рф = 2,1 кгс/см2

9. Определяем аэродинамическое сопротивление форсуночной камеры орошения:

ΔР = 1,14 (pv)1,81 = 1,14 х 1,841,81 = 3,43 кгс/м2 (4.6)

4.3. Воздухонагреватели и воздухоохладители.

Воздухонагревательные и воздухоохладительные установки собираются из одних и тех же базовых унифицированных теплообменников, конструктивные характеристики представлены в [2]. Число и размеры теплообменников, размещаемых во фронтальном сечении установки, однозначно определяются производительностью кондиционера.

Базовые теплообменники могут присоединятся к трубопроводам тепло-холодоносителя по различным схемам согласно [2].

Расчет воздухонагревательных и воздухоохладительных установок состоит из следующих операций:

По известной величине расчетного воздухообмена G, согласно [2], выбирается марка кондиционера и определяется площадь фасадного сечения Fф ,м2.

Вычисляется массовая скорость воздуха в фасадном сечении установки:

 , кг/(м2с) (4.7)

Определяются температурные критерии:

при нагревании воздуха

, (4.8)

 , (4.9)

расход теплоносителя

 , кг/ч (4.10)

где: tн , tк – начальная и конечная температура обрабатываемого воздуха, °С, tг,tо–температура теплоносителя на входе и выходе из воздухонагревателя,°С,

twг,twо–температура охлажденной воды на входе и выходе из воздухоохладителя, °С.

Согласно [2] находятся все возможные схемы компоновки и присоединения, базовых теплообменников к трубопроводам тепло-холодоносителя, соответствующие производительности принятой марки кондиционера. Для каждой схемы определяется величина компоновочного фактора .

Для каждой выбранной схемы определяется общее число рядов теплообменников по глубине установки:

 (4.11)

При этом для воздухонагревателей принимается D=7,08; для воздухоохладителей – D=8,85.

Полученные значения Zу округляются до ближайших больших Z'у .

Для каждого компоновочного варианта установки находится общая площадь поверхности теплообмена:

Fу = Fр Z'у ,м2 (4.12)

и вычисляется запас в площади по сравнению с её расчетным значением:

 , (4.13)

Для всех принятых схем определяется величина площади живого сечения для прохода тепло-холодоносителя:

 , м2 , (4.14)

и находится скорость воды в трубках хода и присоединительных патрубках:

, м/с, (4.15)

, м/с, (4.16)

где:  – значение компоновочного фактора для выбранной схемы, уточненное для фактического числа рядов труб Z'у ;

ρw – средняя плотность воды в теплообменнике, принимаемая для воздухонагревателей первого и второго подогрева соответственно951 и 988 кг/м3 и для воздухоохладителей ρw = 998 кг/м3;

dп.п – внутренний диаметр присоединительных патрубков, равный для всех типов теплообменников dп.п = 0,041 м;

Х – число параллельно присоединенных входящих патрубков в ряду.

Последующие расчеты производятся для схемы компоновки базовых теплообменников с наибольшим запасом площади теплообмена. Но если при этом скорость воды в трубках или в присоединительных патрубках будет превышать 2÷2,5 м/с, то в качестве расчетной следует принять схему с меньшим значением компоновочного фактора.

Находится гидродинамическое сопротивление теплообменной установки (без соединительных и подводящих патрубков):

ΔНу = Аω2 , кПа, (4.17)

где: А – коэффициент, зависящий от количества труб в теплообменнике и его высоте и принимаемый согласно [2].

Определяется аэродинамическое сопротивление установки:

с однорядными теплообменниками

ΔРу = 7,5(ρν)ф1,97R2 Z'у ,Па, (4.18)

с двухрядными теплообменниками

ΔРу = 11,7(ρν)ф1,15R2 Z'у ,Па, (4.19)

Значение R определяется по [2] в зависимости от среднеарифметической температуры воздуха.

Расчет водухонагревателя.

Fф = 6,63 м2

 кг/(м2с)

 

Выбираем:

Схема 1:  

Схема 2:  

Схема 4:  

Схема 1:

 

Zу = 0,59 ; Z'у = 1

Схема 2:

 

Zу = 0,63 ; Z'у = 1

Схема 4:

 

Zу = 0,54 ; Z'у = 1

Fу = 113 х 1 =113 м2

Схема 1:  

Схема 2:  

Схема 4:  

Схема 1:

 м2

 м/с

 м/с

Схема 2:

 м2

 м/с

 м/с

Схема 4:

 м2

 м/с

 м/с

Для дальнейших расчетов выбираем схему 4.

ΔНу = 26,683 х 0,372 =3,65 кПа,

ΔРу = 7,5 х 2,271,97 х 0,982 х 1 = 36,2,Па

4.4. Холодильные установки.

В центральных и местных системах кондиционирования воздуха для получения холода широко применяются агрегатированные фреоновые холодильные машины, объединяющие компрессор, испаритель, конденсатор, внутренние коммуникации, арматуру, электрооборудование и автоматику. Их технические характеристики приведены [2]. Расчет холодильной установки сводится к определению её холодопроизводительности и подбору соответствующей ей марки машины.

Расчет производится в следующем порядке:

Вычисляется холодопроизводительность установки в рабочем режиме:

, кВт, (4.20)

где: Ах – коэффициент запаса, учитывающий потери холода на тракте хладагента, холодоносителя и вследствие нагревании воды в насосах и и принимаемый для машин с холодопроизводительностью до 200 кВт Ах = 1,15 ÷ 1,2 , более 200 кВт Ах = 1,12 ÷ 1,15;

Iн , Iк – энтальпия воздуха на входе в камеру орошения и выходе из неё.

Определяются основные температуры, характеризующие режим работы холодильной установки:

температура кипения холодильного агента

 , °С, (4.21)

температура конденсации холодильного агента

tконд = tк.к + (3÷4) , °С, (4.22)

температура переохлаждения холодильного агента

tп.х = tк.н + (1÷2) , °С, (4.23)

где: tн.х – температура воды на входе в испаритель и на выходе из него, °С;

tк.н – температура охлаждающей воды перед конденсатором, ориентировочно принимаемая tк.н = 20°С;

tк.к – температура воды на выходе из конденсатора, принимаемая на 3÷4°С больше tк.н ,°С.

Температуру кипения хладагента в испарителе следует принимать не ниже 2°С, причем температура воды, выходящей из испарителя, не должна быть ниже 6 °С.

Хоодопроизводительность установки, требуемая в рабочем режиме, приводится к стандартным условиям (tн.х =5°C, tконд=35°С, tп.х =30°С):

 , кВт, (4.24)

где: Qх.с – холодопроизводительность холодильной машины в стандартном режиме, кВт;

λс , λр – коэффициенты подачи компрессора при стандартном и рабочем режимах;

qvc , qvp – объемная холодопроизводительность при стандартном и рабочем режимах, кДж/м3.

Коэффициент λс принимается равным λс=0,76, а величина λр определяется согласно [2].

Объемная холодопроизводительность при стандартных условиях принимается равной qvc=2630 кДж/м3, а величина qvp определяется по формуле:

 , кДж/м3 , (4.25)

где: iи.х – энтальпия паровой фазы хладагента при tи.х , кДж/кг;

iп.х – энтальпия жидкой фазы хладагента при tп.х , кДж/кг;

vи.х – удельный объем паров хладагента при tи.х ,кг/м3.

Согласно [2] подбирается 2 ÷ 4 однотипных холодильных машины и из них компонуется общая установка. При этом суммарная холодопроизводительность принятого числа машин должна равняться вычесленному по формуле (2.19) значению Qх.с .

Вентиляторные агрегаты.

Для комплектации центральных систем кондиционирования воздуха используют вентиляторные агрегаты одностороннего и двустороннего всасывания.

Принимаем вентилятор ВР-86-77-5:

Диаметр колеса D = Dном;

Потребляемая мощность N = 2,2 кВт;

Число оборотов n = 1420 об./мин;

Двигатель АИР90L4.


Дата добавления: 2019-07-15; просмотров: 171; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!