K-Wave: MATLAB toolbox for the simulation and reconstruction of



Рекомендации БМИ_ 3к 2019

Темы для ВКР бакалавров и магистров ФТИ

по направлениям кафедры оптических и биотехнических систем и технологий

Лазерные технологии:

  1. Лазерное фотоакустическое сканирование
  2. Лазерная вискозиметрия
  3. Лазерная агрегатометрия
  4. Лазерная фотоакустическая цитометрия
  5. Лазерная фотоакустическая термометрия
  6. Лазерное детектирование ультразвука
  7. Лазерная молекулярная фотоакустика

Ультразвуковые исследования биомедицинских объектов:

1. Сонография

2. Эластография

3. Виброакустика

4. Ультразвуковая микроскопия

5. Ультразвуковая термометрия

6. Оптический детектор ультразвука

Термоакустические исследования биомедицинских объектов:

  1. Фотоакустическая визуализация
  2. Фотоакустическая микроскопия
  3. Фотоакустическая цитометрия
  4. Фотоакустическая термометрия
  5. Фотоакустическая вискозиметрия
  6. Молекулярная фотоакустическая томография
  7. ВЧ термоакустическая визуализация
  8. СВЧ термоакустическая томография (для маммографии)

Акустооптическая визуализация и томография биомедицинских объектов:

  1. Акустооптическая Фурье-томография
  2. Акустооптическая параллельная томография
  3. Акустооптическая эластография

 

Формулировка темы ВКР: «Система для …»

 

Требования к содержанию реферата (по курсу БМИ)

  1. Тема (наименование) – устройство (или система) для …
  2. Введение (назначение, область применения, актуальность вопроса).
  3. Описание используемого физического эффекта.
  4. Известные области применения эффекта (в приборах и методах исследований).
  5. Функциональная схема устройства.
  6. Описание работы устройства.
  7. Пример выполнения устройства (по опубликованным данным).
  8. Заключение.

 

Требования к содержанию работы (проекта).

(ВКР бакалавров и магистров различаются требованиями по глубине проработки задачи).

Тема ВКР (наименование проекта): «Система для …»

Аннотация (работы, проекта).

Содержание:

1. Введение (с постановкой задачи проекта)

2. Описание используемого физического эффекта.

3. Известные области применения эффекта в приборах и методах исследований.

4. Функциональная схема устройства (выбор и обоснование).

5. Описание работы устройства.

6. Пример выполнения устройства (по опубликованным данным – аналог).

7. Выбор и обоснование устройства (или системы) и используемого метода исследований (или измерений) объекта -для конкретного перспективного применения в рамках решаемой в проекте задачи.

8. Постановка задачи для принципиальной проработки проекта устройства (т.е. технические характеристики – техническое задание на устройство или систему).

9. Разработка функциональной схемы устройства, описание функционирования, моделирование и расчеты требований к элементам и узлам устройства (системы).

10. Проект медико-технических требований на разработку заявляемого прибора.

11. Технико-экономическое обоснование.

Заключение (выводы по проекту).

 

 Рекомендуемые поисковики:

1.    https://scholar.google.ru

2.    http://sci-hub.se

3.    http://patft.uspto.gov

4.    https://patents.google.com

5.    https://www.google.ru/

6.    https://cyberleninka.ru/

7.    https://ru.espacenet.com

8.    https://patentscope.wipo.int/search/en/search.jsf

9.    http://www1.fips.ru/wps/portal/IPS_Ru#1518554406865

10. https://worldwide.espacenet.com/searchResults?DB=ep.espacenet.com&compact=false&AB=viscosity%20AND%20measuring&locale=ru_RU

 

Уважаемые студенты

Желающие проходить производственную практику и выполнить ВКР по одному из предлагаемых научных направлений (и разделов списка литературы) могут согласовать со мной постановку задачи, уточнить выбор литературы. Рекомендую ознакомиться с указанными в списке обзорами (на английском), а также с энциклопедическими сведениями на русском языке по перечню тем рефератов (например,через яндекс и википедию).

 

Проф. Обрубов Олег Петрович, obrubov-op@mail.ru . тел. 8-916-318-6948

20.02.2019


 

Литература для ВКР 02.2019 (и для рефератов по БМИ _3 курс)

1.Фотоакустика –обзоры . - Review on Photoacoustic
1.1 Photoacoustic tomography and sensing in biomedicine. FEATURED ARTICLE REVIEW ARTICLE. Author. Changhui Li and Lihong V Wang. Affiliations ...
iopscience.iop.org/0031-9155/54/19/R01
http://iopscience.iop.org/0031-9155/54/19/R01/pdf/0031-9155_54_19_R01.pdf

1.2 Ultrasound-mediated biophotonic imaging: A review of acousto-optical tomography and photo-acoustic tomography. LV Wang - Disease Markers, 2004

1.3 Lihong V. Wang: Prospects of photoacoustic tomography. 5759. Medical Physics, Vol. 35, No. 12, December 2008. http://online.medphys.org/resource/1/mphya6/v35/i12/p5758_s1?isAuthorized=no

2. Фотоакустическое преобразование.
2.1 Эффективность преобразования световой энергии в акустическую при ...
www.ebiblioteka.lt/resursai/Uzsienio%20leidiniai/.../2002/.../ztf_t72v10_15.pdf

k-Wave: MATLAB toolbox for the simulation and reconstruction of

k k t s b s v a. F t p. N g 0 w d. Treeby and Cox: k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields ...
www.mendeley.com/.../kwave-matlab-toolbox-simulation-reconstruction-photoacoustic-wave-fields/ - США

3. Оптический детектор ультразвука
1.1 SPIE BIOS 2000, 22-28 January 2000, San Jose. An optical detection system for biomedical photoacoustic imaging. Beard PC. * and Mills TN ...
www.medphys.ucl.ac.uk/research/mle/pdf.../bios200manuscript2.pdf
1.2 M. Spisar, T. Buma and M. O'Donnell, "Stabilized, Resonant Optoacoustic Array. Detectors for Medical Imaging", Proceedings of the World Congress on ...
www.engr.washington.edu/sites/default/files/about/dean/odonnell_CV.pdf
1.3 A Comparison of Laser-Ultrasound Detection Systems Sensitivity with a Broadband Ultrasonic Source for Biomedical Applications. Marjaneh Hejazi,a Mohamad D. ...
rcstim.tums.ac.ir/db/papers/127.pdf
1.4 High frequency optoacoustic arrays using etalon detection ...
Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр
posal for a high frequency optoacoustic array system using an etalon. ...
www.ece.udel.edu/~buma/Publications/Optoacoustic_Etalon_UFFC.pdf
1.5 High frequency optoacoustic arrays using etalon detection ...
posal for a high frequency optoacoustic array system using an etalon. ... of Michigan, Ann Arbor, MI 48109-2125. Reflector. Reflector. Ultrasound ...... [1] J. D. Hamilton and M. O'Donnell, "Optical arrays for high frequency ultrasound ...
ieeexplore.ieee.org/iel5/58/17737/00818758.pdf?arnumber=818758

1.6 High Frequency Optoacoustic Transducers for Ultrasonic and ...
www.crcnetbase.com/doi/pdf/10.1201/9781420059922.ch18
1.7 Thermoelastic expansion vs. piezoelectricity for high-frequency, 2 ...
Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр
Ann Arbor,. MI 48109-2125 (e-mail: takbuma~eecs.umich.e~lu). Hydrophone ... seem imprsctical for high-frequency arrays. However, it is ...
www.ece.udel.edu/~buma/Publications/Thermo_vs_Piezo_UFFC.pdf

4. Цитометрия -Cytometry
2.1 Ultra-fast photoacoustic flow cytometry with a 0.5 MHz pulse ...
Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр
Ultra-fast photoacoustic flow cytometry with a. 0.5 MHz pulse repetition rate nanosecond laser. Dmitry A. Nedosekin,1 Mustafa Sarimollaoglu,1 Evgeny V. ...
www.multiwavephotonics.com/img_upload/noticias/Zharov_paper.pdf


2.2 Photoacoustic detection of circulating melanoma cells in human blood
Формат файлов: PDF/Adobe Acrobat - Быстрый просмотр
Photoacoustic detection of circulating melanoma cells in human blood. John ...
spie.org/documents/Newsroom/.../1630_5734_0_2009-04-21.pdf –

 
2.3 In vivo, noninvasive, label-free detection and eradication of ...
15 Oct 2009 ... In vivo, noninvasive, label-free detection and eradication of circulating ... melanoma cells using two-color photoacoustic flow cytometry with a diode laser. Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. ..
http://cancerres.aacrjournals.org/content/69/20/7926.full.pdf+html

2.4 Nanotechnology-based molecular photoacoustic and photothermal flow ...
7 Oct 2009 ... Galanzha, E. I., Kim, J.-W. and Zharov, V. P. (2009), Nanotechnology-based molecular photoacoustic and photothermal flow cytometry platform ...
onlinelibrary.wiley.com/doi/10.1002/jbio.200910078/abstract
http://onlinelibrary.wiley.com/doi/10.1002/jbio.200910078/pdf

 

2.5 1 Aug 2008 ... In vivo multispectral, multiparameter, photoacoustic lymph flowcytometry with natural cell focusing, label-free detection and multicolor ...
onlinelibrary.wiley.com › ... › Journal Home › Vol 73A Issue 10

http://onlinelibrary.wiley.com/doi/10.1002/cyto.a.20587/pdf

 

2.6 13 Oct 2009 ... In vivo, noninvasive, label-free detection and eradication of circulating metastatic melanoma ... Galanzha EI, Shashkov EV, Spring PM, Suen JY, Zharov VP. ... Animals; Flow Cytometry*; Humans; Laser Therapy/methods* ...
www.ncbi.nlm.nih.gov/pubmed/19826056

 

2.7 Zharov, V. P., Galanzha, E. I. and Tuchin, V. V. (2006), In vivo photothermal flowcytometry:Imaging and detection of individual cells in ...
http://onlinelibrary.wiley.com/doi/10.1002/jcb.20766/pdf

 

ФА-вискозиметрия 10.2018

  1. Lou, C., & Xing, D. (2010). Photoacoustic measurement of liquid viscosity. Applied Physics Letters, 96(21), 211102. doi:10.1063/1.3435462
  2. Chen, W., Gao, C., Liu, X., Liu, F., Wang, F., Tang, L.-J., & Jiang, J.-H. (2018). Engineering Organelle-Specific Molecular Viscosimeters Using Aggregation-Induced Emission Luminogens for Live Cell Imaging. Analytical Chemistry, 90(15), 8736–8741. doi:10.1021/acs.analchem.8b02940
  3. Gao, G., Yang, S., & Xing, D. (2011). Viscoelasticity imaging of biological tissues with phase-resolved photoacoustic measurement. Optics Letters, 36(17), 3341. doi:10.1364/ol.36.003341
  4. Buiochi, F., Higuti, T., Furukawa, C. M., & Adamowski, J. C. (n.d.). Ultrasonic measurement of viscosity of liquids. 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121). doi:10.1109/ultsym.2000.922604
  5. Zhao, Y., Yang, S., Chen, C., & Xing, D. (2014). Simultaneous optical absorption and viscoelasticity imaging based on photoacoustic lock-in measurement. Optics Letters, 39(9), 2565. doi:10.1364/ol.39.002565
  6. Zhao, Y., Chen, C., Liu, H., Yang, S., & Xing, D. (2016). Time-resolved photoacoustic measurement for evaluation of viscoelastic properties of biological tissues. Applied Physics Letters, 109(20), 203702. doi:10.1063/1.4968188
  7. Parker, W. C., Chakraborty, N., Vrikkis, R., Elliott, G., Smith, S., & Moyer, P. J. (2010). High-resolution intracellular viscosity measurement using time-dependent fluorescence anisotropy. Optics Express, 18(16), 16607. doi:10.1364/oe.18.016607
  8. Sklodowska, K., Debski, P., Michalski, J., Korczyk, P., Dolata, M., Zajac, M., & Jakiela, S. (2018). Simultaneous Measurement of Viscosity and Optical Density of Bacterial Growth and Death in a Microdroplet. Micromachines, 9(5), 251. doi:10.3390/mi905025
  9. Wang, Q., Shi, Y., Yang, F., & Yang, S. (2018). Quantitative photoacoustic elasticity and viscosity imaging for cirrhosis detection. Applied Physics Letters, 112(21), 211902. doi:10.1063/1.5021675
  10. Li, J., Tang, Z., Xia, Y., Lou, Y., & Li, G. (2008). Cell viscoelastic characterization using photoacoustic measurement. Journal of Applied Physics, 104(3), 034702. doi:10.1063/1.2949261
  11. Tang, J. X. (2016). Measurements of fluid viscosity using a miniature ball drop device. Review of Scientific Instruments, 87(5), 054301. doi:10.1063/1.4948314
  12. Anderson, A. M., Bruno, B. A., & Smith, L. S. (2015). Viscosity Measurement. Mechanical Engineers’ Handbook, 1–28. doi:10.1002/9781118985960.meh123
  1. Vibro-acoustography 11.2018
  1. Shigao Chen, Fatemi, M., Kinnick, R., & Greenleaf, J. F. (2004). Comparison of stress field forming methods for vibro-acoustography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51(3), 313–321. doi:10.1109/tuffc.2004.1320787
  2. Mazumder, D., Umesh, S., Vasu, R. M., Roy, D., Kanhirodan, R., & Asokan, S. (2016). Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes. Physics in Medicine and Biology, 62(1), 107–126. doi:10.1088/1361-6560/62/1/107

sci-hub.tw/10.1088/1361-6560/62/1/107

  1. Alizad, A., Fatemi, M., Wold, L. E., & Greenleaf, J. F. (2004). Performance of Vibro-Acoustography in Detecting Microcalcifications in Excised Human Breast Tissue: A Study of 74 Tissue Samples. IEEE Transactions on Medical Imaging, 23(3), 307–312. doi:10.1109/tmi.2004.824241
  2. Mitri, F. G., & Kinnick, R. R. (2012). Vibroacoustography Imaging of Kidney Stones In Vitro. IEEE Transactions on Biomedical Engineering, 59(1), 248–254. doi:10.1109/tbme.2011.2171341
  3. Fatemi, M., Manduca, A., & Greenleaf, J. F. (2003). Imaging elastic properties of biological tissues by low-frequency harmonic vibration. Proceedings of the IEEE, 91(10), 1503–1519. doi:10.1109/jproc.2003.817865
  4. Alizad, A., Fatemi, M., Wold, L. E., & Greenleaf, J. F. (2004). Performance of Vibro-Acoustography in Detecting Microcalcifications in Excised Human Breast Tissue: A Study of 74 Tissue Samples. IEEE Transactions on Medical Imaging, 23(3), 307–312. doi:10.1109/tmi.2004.824241
  5. Shigao Chen, Fatemi, M., Kinnick, R., & Greenleaf, J. F. (2004). Comparison of Stress Field Forming Methods for Vibro-acoustography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51(3), 313–321. doi:10.1109/tuffc.2004.1295411
  6. Fatemi, M., & Greenleaf, J. F. (1999). Vibro-acoustography: An imaging modality based on ultrasound-stimulated acoustic emission. Proceedings of the National Academy of Sciences, 96(12), 6603–6608. doi:10.1073/pnas.96.12.6603
  7. Alizad, A., Whaley, D. H., Greenleaf, J. F., & Fatemi, M. (2006). Critical issues in breast imaging by vibro-acoustography. Ultrasonics, 44, e217–e220. doi:10.1016/j.ultras.2006.06.021
  8. Urban, M. W., Chalek, C., Kinnick, R. R., Kinter, T. M., Haider, B., Greenleaf, J. F., … Fatemi, M. (2011). Implementation of vibro-acoustography on a clinical ultrasound system. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(6), 1169–1181. doi:10.1109/tuffc.2011.1927
  9. Pislaru, C., Kantor, B., Kinnick, R. R., Anderson, J. L., Aubry, M.-C., Urban, M. W., … Greenleaf, J. F. (2008). In Vivo Vibroacoustography of Large Peripheral Arteries. Investigative Radiology, 43(4), 243–252. doi:10.1097/rli.0b013e31816085fc
  10. Silva, G. T., Shigao Chen, Frery, A. C., Greenleaf, J. F., & Fatemi, M. (2005). Stress field forming of sector array transducers for vibro-acoustography. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(11), 1943–1951. doi:10.1109/tuffc.2005.1561663
  1. Измерение температуры -Temperature monitoring
    7.1. Lou, C., & Xing, D. (2010). Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: A feasibility study. International Journal of Hyperthermia, 26(4), 338–346. doi:10.3109/02656731003592035

7.2 Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362

 

Thermometry noninvasive 2018

  1. Ebbini, E. S., Simon, C., & Liu, D. (2018). Real-Time Ultrasound Thermography and Thermometry [Life Sciences]. IEEE Signal Processing Magazine, 35(2), 166–174. doi:10.1109/msp.2017.2773338

sci-hub.tw/10.1109/MSP.2017.2773338

  1. Sugumar, S. P., Krishnamurthy, C. V., & Arunachalam, K. (2018). Characterization of Microwave Dicke Radiometer for Non-Invasive Tissue Thermometry. 2018 IEEE International Microwave Biomedical Conference (IMBioC). doi:10.1109/imbioc.2018.8428912

sci-hub.tw/10.1109/IMBIOC.2018.8428912

  1. Alaeian, M., & Orlande, H. R. B. (2016). Inverse Photoacoustic Technique for Parameter and Temperature Estimation in Tissues. Heat Transfer Engineering, 38(18), 1573–1594. doi:10.1080/01457632.2016.1262721

sci-hub.tw/10.1080/01457632.2016.1262721

  1. Liu, S., Feng, X., Ruochong, Z., & Zheng, Y. (2018). Portable photoacoustic system for noninvasive blood temperature measurement. 2018 IEEE International Symposium on Circuits and Systems (ISCAS). doi:10.1109/iscas.2018.8351607

sci-hub.tw/10.1109/ISCAS.2018.8351607

  1. Schena, E., Giurazza, F., Massaroni, C., Fong, Y., Park, J. J., & Saccomandi, P. (2017). Thermometry based on computed tomography images during microwave ablation: Trials on ex vivo porcine liver. 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). doi:10.1109/i2mtc.2017.7969940

sci-hub.tw/10.1109/I2MTC.2017.7969940

  1. Byambaakhuu, B., Nyamsuren, P., Park, R.-S., & Cheon, C. (2017). Monostatic radiometry system for temperature measurement during RF hyperthermia treatment. Microwave and Optical Technology Letters, 59(9), 2262–2272. doi:10.1002/mop.30725

sci-hub.tw/10.1002/mop.30725

  1. Kothawala, A., Baskaran, D., Arunachalam, K., & Thittai, A. K. (2018). A time domain method to monitor temperature in microwave hyperthermia using ultrasound attenuation. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). doi:10.1109/isbi.2018.8363856

sci-hub.tw/10.1109/ISBI.2018.8363856

  1. Anosov, A. A., Subochev, P. V., Mansfeld, A. D., & Sharakshane, A. A. (2018). Physical and computer-based modeling in internal temperature reconstruction by the method of passive acoustic thermometry. Ultrasonics, 82, 336–344. doi:10.1016/j.ultras.2017.09.015

sci-hub.tw/10.1016/j.ultras.2017.09.015

  1. Momenroodaki, P., Haines, W., & Popovic, Z. (2017). Non-invasive microwave thermometry of multilayer human tissues. 2017 IEEE MTT-S International Microwave Symposium (IMS). doi:10.1109/mwsym.2017.8058873

sci-hub.tw/10.1109/mwsym.2017.8058873

  1. Kim, Y., Audigier, C., Ellens, N., & Boctor, E. M. (2017). A novel 3D ultrasound thermometry method for HIFU ablation using an ultrasound element. 2017 IEEE International Ultrasonics Symposium (IUS). doi:10.1109/ultsym.2017.8091592

sci-hub.tw/10.1109/ULTSYM.2017.8091592

 

  1. Alaeian, M., Orlande, H. R. B., & Lamien, B. (2018). Application of the photoacoustic technique for temperature measurements during hyperthermia. Inverse Problems in Science and Engineering, 1–21. doi:10.1080/17415977.2018.1516767

sci-hub.tw/10.1080/17415977.2018.1516767

  1. Paltauf, G., & Dyer, P. E. (2003). Photomechanical Processes and Effects in Ablation. Chemical Reviews, 103(2), 487–518. doi:10.1021/cr010436c

sci-hub.tw/10.1021/cr010436c

  1. Alvarenga, A. V., Wilkens, V., Georg, O., & Costa-Félix, R. P. B. (2017). Non-invasive Estimation of Temperature during Physiotherapeutic Ultrasound Application Using the Average Gray-Level Content of B-Mode Images: A Metrological Approach. Ultrasound in Medicine & Biology, 43(9), 1938–1952.

 doi:10.1016/j.ultrasmedbio.2017.04.008

  1. Ihara, I., & Kosugi, A. (2018). Noncontact Temperature Sensing of Heated Cylindrical Rod by Laser-Ultrasonic Method. Smart Sensors, Measurement and Instrumentation, 253–266. doi:10.1007/978-3-319-99540-3_13
  2. Palumbo, G., Tosi, D., Schena, E., Massaroni, C., Ippolito, J., Verze, P., … Campopiano, S. (2017). Real-time temperature monitoring during radiofrequency treatments on ex-vivo animal model by fiber Bragg grating sensors . Optical Sensors 2017. doi:10.1117/12.2267227
  3. Addabbo, T., Fort, A., Moretti, R., Mugnaini, M., Vignoli, V., Cinelli, C., & Gerbi, F. (2017). Development of a non-invasive thermometric system for fluids in pipes. 2017 IEEE International Systems Engineering Symposium (ISSE). doi:10.1109/syseng.2017.8088260
  4. Holper, L., Mitra, S., Bale, G., Robertson, N., & Tachtsidis, I. (2017). Prediction of brain tissue temperature using near-infrared spectroscopy. Neurophotonics, 4(2), 021106. doi:10.1117/1.nph.4.2.021106
  5. Oyaga Landa, F. J., Deán-Ben, X. L., Sroka, R., & Razansky, D. (2017). Real-time three-dimensional temperature mapping in photothermal therapy with optoacoustic tomography. Opto-Acoustic Methods and Applications in Biophotonics III. doi:10.1117/12.2285568
  6. Jahns, M., MacDougall, D., & Adamson, R. B. A. (2018). Thermoacoustic Lensing in Ultrasound Imaging of Nonechogenic Tissue During High-intensity Focused Ultrasound Exposure. Ultrasonic Imaging, 40(3), 143–157. doi:10.1177/0161734617752477
  7. Du, Z., Sun, Y., Liu, J., Su, R., Yang, M., Li, N., … Ye, N. (2018). Design of a temperature measurement and feedback control system based on an improved magnetic nanoparticle thermometer. Measurement Science and Technology, 29(4), 045003. doi:10.1088/1361-6501/aaab00
  8. Laha, S. S., Naik, A. R., Kuhn, E. R., Alvarez, M., Sujkowski, A., Wessells, R. J., & Jena, B. P. (2017). Nanothermometry Measure of Muscle Efficiency. Nano Letters, 17(2), 1262–1268. doi:10.1021/acs.nanolett.6b05092
  9. Л.В. Жорина МЕТОДЫ НЕИНВАЗИВНОГО ИЗМЕРЕНИЯ ВНУТРЕННЕЙ ТЕМПЕРАТУРЫ ТЕЛА - Вестник Тамбовского университета. Серия …, 2017 - cyberleninka.ru
  10. Mazumder, D., Vasu, R. M., Roy, D., & Kanhirodan, R. (2017). A remote temperature sensor for an ultrasound hyperthermia system using the acoustic signal derived from the heating signals. International Journal of Hyperthermia, 34(1), 122–131. doi:10.1080/02656736.2017.1324178
  11. Mazumder, D., Umesh, S., Vasu, R. M., Roy, D., Kanhirodan, R., & Asokan, S. (2016). Quantitative vibro-acoustography of tissue-like objects by measurement of resonant modes. Physics in Medicine and Biology, 62(1), 107–126. doi:10.1088/1361-6560/62/1/107
  12. Li, Z., Chen, H., Zhou, F., Li, H., & Chen, W. R. (2018). Interstitial photoacoustic technique and computational simulation for temperature distribution and tissue optical properties in interstitial laser photothermal interaction. Journal of Innovative Optical Health Sciences, 11(01), 1750011. doi:10.1142/s1793545817500110
  13. Petrova, E., Liopo, A., Oraevsky, A. A., & Ermilov, S. A. (2017). Temperature-dependent optoacoustic response and transient through zero Grüneisen parameter in optically contrasted media. Photoacoustics, 7, 36–46. doi:10.1016/j.pacs.2017.06.002
  14. Wu, Y., Liu, J., Wang, Y., Li, K., Li, L., Xu, J., & Wu, D. (2017). Novel Ratiometric Fluorescent Nanothermometers Based on Fluorophores-Labeled Short Single-Stranded DNA. ACS Applied Materials & Interfaces, 9(12), 11073–11081. doi:10.1021/acsami.7b01554
  15. Georg, O., & Wilkens, V. (2017). Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy. doi:10.1063/1.4976597
  16. Petrova, E. V., Brecht, H. P., Motamedi, M., Oraevsky, A. A., & Ermilov, S. A. (2018). In vivo optoacoustic temperature imaging for image-guided cryotherapy of prostate cancer. Physics in Medicine & Biology, 63(6), 064002. doi:10.1088/1361-6560/aab241
  17. Knoerzer, K., Regier, M., & Schubert, H. (2017). Measuring temperature distributions during microwave processing. The Microwave Processing of Foods, 327–349. doi:10.1016/b978-0-08-100528-6.00015-2
  18. Sahinbas, H., Rosch, M., & Demiray, M. (2017). Temperature measurements in a capacitive system of deep loco-regional hyperthermia. Electromagnetic Biology and Medicine, 36(3), 248–258. doi:10.1080/15368378.2017.1307221
  19. Prasad, B., Kim, S., Cho, W., Kim, S., & Kim, J. K. (2018). Effect of tumor properties on energy absorption, temperature mapping, and thermal dose in 13.56-MHz radiofrequency hyperthermia. Journal of Thermal Biology, 74, 281–289. doi:10.1016/j.jtherbio.2018.04.007
  20. Lou, C., & Xing, D. (2010). Temperature monitoring utilising thermoacoustic signals during pulsed microwave thermotherapy: A feasibility study. International Journal of Hyperthermia, 26(4), 338–346. doi:10.3109/02656731003592035
  21. Yang, F., Yang, N., Huo, X., & Xu, S. (2018). Thermal sensing in fluid at the micro-nano-scales. Biomicrofluidics, 12(4), 041501. doi:10.1063/1.5037421
  22. Gao, L., Wang, L., Li, C., Liu, Y., Ke, H., Zhang, C., & Wang, L. V. (2013). Single-cell photoacoustic thermometry. Journal of Biomedical Optics, 18(2), 026003. doi:10.1117/1.jbo.18.2.026003
  23. Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362
  24. Pramanik, M., & Wang, L. V. (2009). Thermoacoustic and photoacoustic sensing of temperature. Journal of Biomedical Optics, 14(5), 054024. doi:10.1117/1.3247155
  25. Wang, S.-H., Wei, C.-W., Jee, S.-H., & Li, P.-C. (2009). Photoacoustic temperature measurements for monitoring of thermal therapy. Photons Plus Ultrasound: Imaging and Sensing 2009. doi:10.1117/12.809973
  26. Gao, L., Zhang, C., Li, C., & Wang, L. V. (2013). Intracellular temperature mapping with fluorescence-assisted photoacoustic-thermometry. Applied Physics Letters, 102(19), 193705. doi:10.1063/1.4807140
  27. Wang, C., Xu, R., Tian, W., Jiang, X., Cui, Z., Wang, M., … Gu, N. (2011). Determining intracellular temperature at single-cell level by a novel thermocouple method. Cell Research, 21(10), 1517–1519. doi:10.1038/cr.2011.117
  28. Petrova, E., Ermilov, S., Su, R., Nadvoretskiy, V., Conjusteau, A., & Oraevsky, A. (2013). Using optoacoustic imaging for measuring the temperature dependence of Grüneisen parameter in optically absorbing solutions. Optics Express, 21(21), 25077. doi:10.1364/oe.21.025077
  29. Nikitin, S. M., Khokhlova, T. D., & Pelivanov, I. M. (2012). Temperature dependence of the optoacoustic transformation efficiency in ex vivo tissues for application in monitoring thermal therapies. Journal of Biomedical Optics, 17(6), 061214. doi:10.1117/1.jbo.17.6.061214
  30. Ke, H., Tai, S., & Wang, L. V. (2014). Photoacoustic thermography of tissue. Journal of Biomedical Optics, 19(2), 026003. doi:10.1117/1.jbo.19.2.026003
  31. Petrova, E. V., Oraevsky, A. A., & Ermilov, S. A. (2014). Red blood cell as a universal optoacoustic sensor for non-invasive temperature monitoring. Applied Physics Letters, 105(9), 094103. doi:10.1063/1.4894635
  32. McCabe, K. M., Lacherndo, E. J., Albino-Flores, I., Sheehan, E., & Hernandez, M. (2011). LacI(Ts)-Regulated Expression as an In Situ Intracellular Biomolecular Thermometer. Applied and Environmental Microbiology, 77(9), 2863–2868. doi:10.1128/aem.01915-10
  33. Pramanik, M., & Wang, L. V. (2009). Thermoacoustic and photoacoustic sensing of temperature. Journal of Biomedical Optics, 14(5), 054024. doi:10.1117/1.3247155
  34. Petrova, E. V., Ermilov, S. A., Su, R., Nadvoretskiy, V., Conjusteau, A., & Oraevsky, A. A. (2014). Temperature dependence of Grüneisen parameter in optically absorbing solutions measured by 2D optoacoustic imaging. Photons Plus Ultrasound: Imaging and Sensing 2014. doi:10.1117/12.2039949
  35. Larina, I. V., Larin, K. V., & Esenaliev, R. O. (2005). Real-time optoacoustic monitoring of temperature in tissues. Journal of Physics D: Applied Physics, 38(15), 2633–2639. doi:10.1088/0022-3727/38/15/015
  36. Gao, L., Zhang, C., Li, C., & Wang, L. (2014). Intracellular temperature mapping with fluorescence-assisted photoacoustic thermometry. Photons Plus Ultrasound: Imaging and Sensing 2014. doi:10.1117/12.2038569
  37. Petrova, E., Liopo, A., Nadvoretskiy, V., & Ermilov, S. (2016). Imaging technique for real-time temperature monitoring during cryotherapy of lesions. Journal of Biomedical Optics, 21(11), 116007. doi:10.1117/1.jbo.21.11.116007
  38. Chen, Y.-S., Frey, W., Walker, C., Aglyamov, S., & Emelianov, S. (2013). Sensitivity enhanced nanothermal sensors for photoacoustic temperature mapping. Journal of Biophotonics, 6(6-7), 534–542. doi:10.1002/jbio.201200219
  39. Landa, F. J. O., Deán-Ben, X. L., Sroka, R., & Razansky, D. (2017). Volumetric Optoacoustic Temperature Mapping in Photothermal Therapy. Scientific Reports, 7(1). doi:10.1038/s41598-017-09069-5
  40. Donner, J. S., Thompson, S. A., Kreuzer, M. P., Baffou, G., & Quidant, R. (2012). Mapping Intracellular Temperature Using Green Fluorescent Protein. Nano Letters, 12(4), 2107–2111. doi:10.1021/nl300389y
  41. Shah, J., Park, S., Aglyamov, S., Larson, T., Ma, L., Sokolov, K., … Emelianov, S. Y. (2008). Photoacoustic imaging and temperature measurement for photothermal cancer therapy. Journal of Biomedical Optics, 13(3), 034024. doi:10.1117/1.2940362
  42. Yao, J., Ke, H., Tai, S., Zhou, Y., & Wang, L. V. (2013). Absolute photoacoustic thermometry in deep tissue. Optics Letters, 38(24), 5228. doi:10.1364/ol.38.005228
  43. Esenaliev, R. O., Oraevsky, A. A., Larin, K. V., Larina, I. V., & Motamedi, M. (1999). Real-time optoacoustic monitoring of temperature in tissues. Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical. doi:10.1117/12.350008
  44. Petrova, E. V., Liopo, A., Oraevsky, A. A., & Ermilov, S. A. (2015). Universal temperature-dependent normalized optoacoustic response of blood . Photons Plus Ultrasound: Imaging and Sensing 2015. doi:10.1117/12.2083594
  45. Yao, L., Huang, H., & Jiang, H. (2014). Finite-element-based photoacoustic imaging of absolute temperature in tissue. Optics Letters, 39(18), 5355. doi:10.1364/ol.39.005355
  46. Sakaguchi, R., Kiyonaka, S., & Mori, Y. (2015). Fluorescent sensors reveal subcellular thermal changes. Current Opinion in Biotechnology, 31, 57–64. doi:10.1016/j.copbio.2014.07.013

Фа-та –вкр 10.2018

1. Gao, F., Zheng, Q., & Zheng, Y. (2014). Electrical circuit modeling and analysis of microwave acoustic interaction with biological tissues. Medical Physics, 41(5), 053302. doi:10.1118/1.4871783

2. Gao, F., Zheng, Y., & Wang, D. (2012). Microwave-acoustic phasoscopy for tissue characterization. Applied Physics Letters, 101(4), 043702. doi:10.1063/1.4739493

3. Gao, F., Zheng, Y., Feng, X., & Ohl, C.-D. (2013). Thermoacoustic resonance effect and circuit modelling of biological tissue. Applied Physics Letters, 102(6), 063702. doi:10.1063/1.4791791

4. Jin, D., Yang, F., Chen, Z., Yang, S., & Xing, D. (2017). Biomechanical and morphological multi-parameter photoacoustic endoscope for identification of early esophageal disease. Applied Physics Letters, 111(10), 103703. doi:10.1063/1.5001272

5. Gao, F., Feng, X., & Zheng, Y. (2013). Microwave-acoustic correlated imaging and circuit modelling of biological tissues. 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO). doi:10.1109/imws-bio.2013.6756256

6. Kirshin, E., Oreshkin, B., Zhu, G. K., Popovic, M., & Coates, M. (2013). Microwave Radar and Microwave-Induced Thermoacoustics: Dual-Modality Approach for Breast Cancer Detection. IEEE Transactions on Biomedical Engineering, 60(2), 354–360. doi:10.1109/tbme.2012.2220768

7. Lashkari, B., Sean Choi, S. S., Khosroshahi, M. E., Dovlo, E., & Mandelis, A. (2015). Simultaneous dual-wavelength photoacoustic radar imaging using waveform engineering with mismatched frequency modulated excitation. Optics Letters, 40(7), 1145. doi:10.1364/ol.40.001145

8. Dong, B., Sun, C., & Zhang, H. F. (2017). Optical Detection of Ultrasound in Photoacoustic Imaging. IEEE Transactions on Biomedical Engineering, 64(1), 4–15. doi:10.1109/tbme.2016.2605451

9. Lashkari, B., & Mandelis, A. (2011). Comparison between pulsed laser and frequency-domain photoacoustic modalities: Signal-to-noise ratio, contrast, resolution, and maximum depth detectivity. Review of Scientific Instruments, 82(9), 094903. doi:10.1063/1.3632117

10. Gao, F., Kishor, R., Feng, X., Liu, S., Ding, R., Zhang, R., & Zheng, Y. (2017). An analytical study of photoacoustic and thermoacoustic generation efficiency towards contrast agent and film design optimization. Photoacoustics, 7, 1–11. doi:10.1016/j.pacs.2017.05.001

11. Hysi, E., Saha, R. K., Rui, M., & Kolios, M. C. (2012). Detection and characterization of red blood cell (RBC) aggregation with photoacoustics. Photons Plus Ultrasound: Imaging and Sensing 2012. doi:10.1117/12.908685

12. Telenkov, S., Alwi, R., Mandelis, A., & Worthington, A. (2011). Frequency-domain photoacoustic phased array probe for biomedical imaging applications. Optics Letters, 36(23), 4560. doi:10.1364/ol.36.004560

13. Chen, C., Zhao, Y., Yang, S., & Xing, D. (2015). Integrated mechanical and structural features for photoacoustic characterization of atherosclerosis using a quasi-continuous laser. Optics Express, 23(13), 17309. doi:10.1364/oe.23.017309

14. Gao, F., Feng, X., & Zheng, Y. (2014). Photoacoustic phasoscopy super-contrast imaging correlating optical absorption and scattering. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 8943.

15. Ogunlade, O., & Beard, P. (2014). Exogenous contrast agents for thermoacoustic imaging: An investigation into the underlying sources of contrast. Medical Physics, 42(1), 170–181. doi:10.1118/1.4903277

16. Su, S.-Y., & Li, P.-C. (2011). Coded excitation for photoacoustic imaging using a high-speed diode laser. Optics Express, 19(2), 1174. doi:10.1364/oe.19.001174

17. Hai, P., Yao, J., Li, G., Li, C., & Wang, L. V. (2016). Photoacoustic elastography. Optics Letters, 41(4), 725. doi:10.1364/ol.41.000725

18. Gao, F., Feng, X., & Zheng, Y. (2014). Coherent Photoacoustic-Ultrasound Correlation and Imaging. IEEE Transactions on Biomedical Engineering, 61(9), 2507–2512. doi:10.1109/tbme.2014.2321007

19. Lou, C., Nie, L., & Xu, D. (2011). Effect of excitation pulse width on thermoacoustic signal characteristics and the corresponding algorithm for optimization of imaging resolution. Journal of Applied Physics, 110(8), 083101. doi:10.1063/1.3651636

20. Gao, F., Feng, X., & Zheng, Y. (2016). Advanced photoacoustic and thermoacoustic sensing and imaging beyond pulsed absorption contrast. Journal of Optics, 18(7), 074006. doi:10.1088/2040-8978/18/7/074006

21. Razansky, D., Kellnberger, S., & Ntziachristos, V. (2010). Near-field radiofrequency thermoacoustic tomography with impulse excitation. Medical Physics, 37(9), 4602–4607. doi:10.1118/1.3467756

22. Li, P.-C., Wei, C.-W., & Sheu, Y. (2008). Subband photoacoustic imaging for contrast improvement. Optics Express, 16(25), 20215. doi:10.1364/oe.16.020215

23. Mandal, S., Dean-Ben, X. L., Burton, N. C., & Razansky, D. (2015). Extending Biological Imaging to the Fifth Dimension: Evolution of volumetric small animal multispectral optoacoustic tomography. IEEE Pulse, 6(3), 47–53. doi:10.1109/mpul.2015.2409103

24. Zhang, R., Gao, F., Feng, X., Liu, S., Ding, R., & Zheng, Y. (2019). Photoacoustic Resonance Imaging. IEEE Journal of Selected Topics in Quantum Electronics, 25(1), 1–7. doi:10.1109/jstqe.2018.2827660

25. Wang, S., Tao, C., Wang, X., & Liu, X. (2014). Photoacoustic measurement of stochastic microstructure using the spectral parameter. Photons Plus Ultrasound: Imaging and Sensing 2014. doi:10.1117/12.2036923

26. Fang, H., Maslov, K., & Wang, L. V. (2007). Photoacoustic Doppler flow measurement in optically scattering media. Applied Physics Letters, 91(26), 264103. doi:10.1063/1.2825569

27. Lou, C., Yang, S., Ji, Z., Chen, Q., & Xing, D. (2012). Ultrashort Microwave-Induced Thermoacoustic Imaging: A Breakthrough in Excitation Efficiency and Spatial Resolution. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.218101

28. Photoacoustic effect in strongly absorbing fluids: S. M. Park et al. Ultrasonics 1991 Vol 29 January 63

29. Chiu, T.-I., Hsiao, T.-C., Luo, S.-B., Tien, W., Cheng, Y.-Y., & Li, M.-L. (2011). A feasibility study of the optoacoustic imaging of microcalcification for early breast cancer detection. 2011 IEEE SENSORS Proceedings. doi:10.1109/icsens.2011.6127042

30. Wu, D., Tao, C., & Liu, X. (2011). Photoacoustic tomography in scattering biological tissue by using virtual time reversal mirror. Journal of Applied Physics, 109(8), 084702. doi:10.1063/1.3581068

31. Hsieh, B.-Y., Chen, S.-L., Ling, T., Guo, L. J., & Li, P.-C. (2012). All-optical scanhead for ultrasound and photoacoustic dual-modality imaging. Optics Express, 20(2), 1588. doi:10.1364/oe.20.001588

32. Lashkari, B., & Mandelis, A. (2010). Photoacoustic radar imaging signal-to-noise ratio, contrast, and resolution enhancement using nonlinear chirp modulation. Optics Letters, 35(10), 1623. doi:10.1364/ol.35.001623

33. Gao, F., Feng, X., & Zheng, Y. (2014). Photoacoustic phasoscopy super-contrast imaging correlating optical absorption and scattering. Photons Plus Ultrasound: Imaging and Sensing 2014. doi:10.1117/12.2041867

34. Xu, G., Dar, I. A., Tao, C., Liu, X., Deng, C. X., & Wang, X. (2012). Photoacoustic spectrum analysis for microstructure characterization in biological tissue: A feasibility study. Applied Physics Letters, 101(22), 221102. doi:10.1063/1.4768703

35. Gao, X., Tao, C., Liu, X., & Wang, X. (2017). Photoacoustic eigen-spectrum from light-absorbing microspheres and its application in noncontact elasticity evaluation. Applied Physics Letters, 110(5), 054101. doi:10.1063/1.4975373

36. Yang, Y., Wang, S., Tao, C., Wang, X., & Liu, X. (2012). Photoacoustic tomography of tissue subwavelength microstructure with a narrowband and low frequency system. Applied Physics Letters, 101(3), 034105. doi:10.1063/1.4736994

37. Sarimollaoglu, M., Nedosekin, D. A., Menyaev, Y. A., Juratli, M. A., & Zharov, V. P. (2014). Nonlinear photoacoustic signal amplification from single targets in absorption background. Photoacoustics, 2(1), 1–11. doi:10.1016/j.pacs.2013.11.002

38. Strohm, E. M., Moore, M. J., & Kolios, M. C. (2016). High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics, 4(1), 36–42. doi:10.1016/j.pacs.2016.01.001

39. Bossy, E., & Gigan, S. (2016). Photoacoustics with coherent light. Photoacoustics, 4(1), 22–35. doi:10.1016/j.pacs.2016.01.003

40. Erfanzadeh, M., Kumavor, P. D., & Zhu, Q. (2018). Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 9, 1–9. doi:10.1016/j.pacs.2017.10.001

41. Stylogiannis, A., Prade, L., Buehler, A., Aguirre, J., Sergiadis, G., & Ntziachristos, V. (2018). Continuous wave laser diodes enable fast optoacoustic imaging. Photoacoustics, 9, 31–38. doi:10.1016/j.pacs.2017.12.002

42. Wu, X., Sanders, J., Dundar, M., & Oralkan, Ö. (2017). Multi-wavelength photoacoustic imaging for monitoring lesion formation during high-intensity focused ultrasound therapy . Photons Plus Ultrasound: Imaging and Sensing 2017. doi:10.1117/12.2248739

43. Xiang, L., Wang, B., Ji, L., & Jiang, H. (2013). 4-D Photoacoustic Tomography. Scientific Reports, 3(1). doi:10.1038/srep01113

44. Daschewski, M., Boehm, R., Prager, J., Kreutzbruck, M., & Harrer, A. (2013). Physics of thermo-acoustic sound generation. Journal of Applied Physics, 114(11), 114903. doi:10.1063/1.4821121

45. Tu, Z., Wang, B., Duan, T., & Gao, F. (2018). Pattern-learning-based Noise Elimination Algorithm in Photoacoustic Sensing and Imaging. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2018.8513176

46. Liu, S., Zhang, R., Zheng, Z., & Zheng, Y. (2018). Electromagnetic–Acoustic Sensing for Biomedical Applications. Sensors, 18(10), 3203. doi:10.3390/s18103203

47. Zhong, H., Duan, T., Lan, H., Zhou, M., & Gao, F. (2018). Review of Low-Cost Photoacoustic Sensing and Imaging Based on Laser Diode and Light-Emitting Diode. Sensors, 18(7), 2264. doi:10.3390/s18072264

48. Wang, Y., Maslov, K., & Wang, L. V. (2012). Spectrally encoded photoacoustic microscopy using a digital mirror device. Journal of Biomedical Optics, 17(6), 066020. doi:10.1117/1.jbo.17.6.066020

49. Yao, J. (2012). Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror. Journal of Biomedical Optics, 17(8), 080505. doi:10.1117/1.jbo.17.8.080505

50. Gray, J. P., Dana, N., Dextraze, K. L., Maier, F., Emelianov, S., & Bouchard, R. R. (2015). Multi-Wavelength Photoacoustic Visualization of High Intensity Focused Ultrasound Lesions. Ultrasonic Imaging, 38(1), 96–112. doi:10.1177/0161734615593747

51. Deán-Ben, X. L., Gottschalk, S., Mc Larney, B., Shoham, S., & Razansky, D. (2017). Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chemical Society Reviews, 46(8), 2158–2198. doi:10.1039/c6cs00765a

52. Wang, L., Zhang, C., & Wang, L. V. (2014). Grueneisen Relaxation Photoacoustic Microscopy. Physical Review Letters, 113(17). doi:10.1103/physrevlett.113.174301

53. Wang, L., Maslov, K., Xing, W., Garcia-Uribe, A., & Wang, L. V. (2012). Video-rate functional photoacoustic microscopy at depths. Journal of Biomedical Optics, 17(10), 1060071. doi:10.1117/1.jbo.17.10.106007

54. Yao, D.-K., Zhang, C., Maslov, K., & Wang, L. V. (2014). Photoacoustic measurement of the Grüneisen parameter of tissue. Journal of Biomedical Optics, 19(1), 017007. doi:10.1117/1.jbo.19.1.017007

55. Wang, L., Xia, J., Yao, J., Maslov, K. I., & Wang, L. V. (2013). Ultrasonically Encoded Photoacoustic Flowgraphy in Biological Tissue. Physical Review Letters, 111(20). doi:10.1103/physrevlett.111.204301

56. Yao, D.-K., & Wang, L. V. (2013). Measurement of Grüneisen parameter of tissue by photoacoustic spectrometry. Photons Plus Ultrasound: Imaging and Sensing 2013. doi:10.1117/12.2004117

57. Wang, W., & Mandelis, A. (2014). Thermally enhanced signal strength and SNR improvement of photoacoustic radar module. Biomedical Optics Express, 5(8), 2785. doi:10.1364/boe.5.002785

58. Yang, J.-M., Favazza, C., Chen, R., Maslov, K., Cai, X., Zhou, Q., … Wang, L. V. (2011). Volumetric photoacoustic endoscopy of upper gastrointestinal tract: ultrasonic transducer technology development. Photons Plus Ultrasound: Imaging and Sensing 2011.

59. Ke, H., Guo, Z., Erpelding, T. N., Jankovic, L., Grubb III, R. L., & Wang, L. V. (2011). Photoacoustic and thermoacoustic tomography of dog prostates. Photons Plus Ultrasound: Imaging and Sensing 2011. doi:10.1117/12.875073

60. Wei, C.-W., Nguyen, T.-M., Xia, J., Arnal, B., Wong, E. Y., Pelivanov, I. M., & O’Donnell, M. (2015). Real-time integrated photoacoustic and ultrasound (PAUS) imaging system to guide interventional procedures: ex vivo study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 62(2), 319–328. doi:10.1109/tuffc.2014.006728

61. Review Photoacoustic Ophthalmoscopy: Principle, Application, and Future Directions Van Phuc Nguyen 1 and Yannis M. Paulus 1 J. Imaging 2018, 4, 149; doi:10.3390/jimaging4120149

62. Nguyen, V., & Paulus, Y. (2018). Photoacoustic Ophthalmoscopy: Principle, Application, and Future Directions. Journal of Imaging, 4(12), 149. doi:10.3390/jimaging4120149

8.. Фотоакустическая микроскопия -Photoacoustic microscopy
8.1 Photoacoustic microscopy at super depths L Wang - SPIE Newsroom, 2008

8.2 Xu, M., & Wang, L. V. (2006). Photoacoustic imaging in biomedicine. Review of Scientific Instruments, 77(4), 041101. doi:10.1063/1.2195024

8.3 Li, L., Zemp, R. J., Lungu, G., Stoica, G., & Wang, L. V. (2007). Photoacoustic imaging of lacZ gene expression in vivo. Journal of Biomedical Optics, 12(2), 020504. doi:10.1117/1.2717531

ФА микроскопия 12.2018


Дата добавления: 2019-03-09; просмотров: 250; Мы поможем в написании вашей работы!

Поделиться с друзьями:






Мы поможем в написании ваших работ!